EPICA Dome C Ice Core Holocene d13CO2 Data ----------------------------------------------------------------------- World Data Center for Paleoclimatology, Boulder and NOAA Paleoclimatology Program ----------------------------------------------------------------------- NOTE: PLEASE CITE ORIGINAL REFERENCE WHEN USING THIS DATA!!!!! NAME OF DATA SET: EPICA Dome C Ice Core Holocene d13CO2 Data LAST UPDATE: 10/2009 (Original receipt by WDC Paleo) CONTRIBUTOR: Joachim Elsig, et al., University of Bern IGBP PAGES/WDCA CONTRIBUTION SERIES NUMBER: 2009-119 WDC PALEO CONTRIBUTION SERIES CITATION: Elsig, J., et al. 2009. EPICA Dome C Ice Core Holocene d13CO2 Data. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2009-119. NOAA/NCDC Paleoclimatology Program, Boulder CO, USA. ORIGINAL REFERENCE: Elsig, J., J. Schmitt, D. Leuenberger, R. Schneider, M. Eyer, M. Leuenberger, F. Joos, H. Fischer, and T.F. Stocker. 2009. Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core. Nature, Vol. 461, pp. 507-510, 24 September 2009. doi:10.1038/nature08393 ABSTRACT: Reconstructions of atmospheric CO2 concentrations based on Antarctic ice cores reveal significant changes during the Holocene epoch, but the processes responsible for these changes in CO2 concentrations have not been unambiguously identified. Distinct characteristics in the carbon isotope signatures of the major carbon reservoirs (ocean, biosphere, sediments and atmosphere) constrain variations in the CO2 fluxes between those reservoirs. Here we present a highly resolved atmospheric d13C record for the past 11,000 years from measurements on atmospheric CO2 trapped in an Antarctic ice core. From mass-balance inverse model calculations performed with a simplified carbon cycle model, we show that the decrease in atmospheric CO2 of about 5 parts per million by volume (p.p.m.v.). The increase in d13C of about 0.25% during the early Holocene is most probably the result of a combination of carbon uptake of about 290 gigatonnes of carbon by the land biosphere and carbon release from the ocean in response to carbonate compensation of the terrestrial uptake during the termination of the last ice age. The 20 p.p.m.v. increase of atmospheric CO2 and the small decrease in d13C of about 0.05% during the later Holocene can mostly be explained by contributions from carbonate compensation of earlier land-biosphere uptake and coral reef formation, with only a minor contribution from a small decrease of the land-biosphere carbon inventory. GEOGRAPHIC REGION: East Antarctica PERIOD OF RECORD: 11 kyrBP - 0.39 kyrBP FUNDING SOURCES: This work is a contribution to the European Project for Ice Coring in Antarctica (EPICA), a joint European Science Foundation/European Commission scientific programme, funded by the EU (EPICA-MIS) and by national contributions from Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Sweden, Switzerland and the United Kingdom. The main logistic support was provided by IPEV and PNRA (at Dome C) and AWI (at Dronning Maud Land). We acknowledge financial support by the Swiss NSF, the DFG priority programme INTERDYNAMIK and the German climate programme DEKLIM. This is EPICA publication no. 227. DESCRIPTION: Carbon isotope record of CO2 (d13CO2) from the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core covering 0 to 11 kyr BP. The air from polar ice-core samples of about 30g (AWI/Bern) and 5-6g (Bern) is extracted under vacuum with a sublimation method or via mechanical cracking, respectively, and the extracted gas is then analysed for d13CO2 using gas chromatographic separation and isotopic analyses on two independent mass spectrometers. The mean d13CO2 analytical uncertainty of both methods (1-sigma) is 0.07 per mil. The gas age scale used is EDC3 gas age scenario 4 (Loulergue et al., Climate of the Past, 3, 527-540, 2007) EPICA Dome C ice core location: 75º06'S, 123º21'E, 3233m above sea level Mean values and 1-sigma uncertainties are given for all the samples with depth differences <15cm. Depths marked via '*', are outliers, and have not been taken into account for deconvolution calculations. The outlier depths have been measured using both extraction methods and are very likely caused by an ice core break during the drilling (compare supplementary information of Elsig et al. 2009) DATA: EDC d13CO2 Data All data (AWI and Bern). Column 1: EDC1999 depth (m) Column 2: Gas Age (EDC3 gas age, years before 1950 AD) Column 3: d13CO2 mean (permil on VPDB scale), corrected for gravitational fractionation using d15N2 data Column 4: 1-sigma uncertainty (permil on VPDB scale) Column 5: number of replicates Column 6: extraction method (mechanical cracking or sublimation of the ice) Column 7: measured ice core (EDC96) Depth gas_age d13CO2 err d13CO2 replicates machine ice core 110.19 387 -6.37 0.10 4 cracker EDC96 118.48 660 -6.38 0.05 2 cracker EDC96 129.51 1043 -6.30 0.00 2 cracker EDC96 129.61 1047 -6.45 0.02 3 sublimation EDC96 141.17 1440 -6.38 0.10 3 cracker EDC96 144.00 1543 -6.36 NAN 1 sublimation EDC96 144.57 1565 -6.38 0.03 20 cracker EDC96 151.07 1801 -6.31 0.11 2 cracker EDC96 154.22 1912 -6.38 NAN 1 sublimation EDC96 162.01 2198 -6.36 0.11 2 cracker EDC96 170.80 2523 -6.82* 0.18 3 sublimation EDC96 170.87 2525 -6.65* 0.07 4 cracker EDC96 172.94 2594 -6.42 0.05 2 sublimation EDC96 172.97 2595 -6.43 0.12 2 cracker EDC96 181.37 2893 -6.28 0.09 2 cracker EDC96 185.51 3030 -6.30 0.05 2 cracker EDC96 185.65 3036 -6.33 NAN 1 sublimation EDC96 192.93 3325 -6.26 0.13 3 cracker EDC96 196.11 3439 -6.29 NAN 1 sublimation EDC96 206.01 3778 -6.37 0.06 2 cracker EDC96 214.90 4088 -6.38 0.09 3 sublimation EDC96 216.52 4153 -6.36 0.03 2 cracker EDC96 220.98 4317 -6.41 0.06 4 cracker EDC96 231.91 4692 -6.24 0.10 2 cracker EDC96 231.97 4694 -6.31 NAN 1 sublimation EDC96 240.11 4992 -6.34 0.13 2 cracker EDC96 250.34 5350 -6.37 0.11 3 sublimation EDC96 250.44 5353 -6.32 0.08 3 cracker EDC96 260.28 5694 -6.31 0.07 3 cracker EDC96 260.40 5698 -6.34 0.06 3 sublimation EDC96 271.90 6116 -6.36 0.04 2 cracker EDC96 280.25 6414 -6.28 NAN 1 sublimation EDC96 280.40 6420 -6.31 0.07 2 cracker EDC96 283.55 6533 -6.28 0.08 2 cracker EDC96 291.82 6826 -6.36 0.05 2 cracker EDC96 294.50 6928 -6.33 0.07 6 cracker EDC96 294.58 6930 -6.39 NAN 1 sublimation EDC96 302.84 7221 -6.37 0.08 4 cracker EDC96 305.50 7300 -6.29 0.13 2 cracker EDC96 308.00 7389 -6.43 NAN 1 sublimation EDC96 312.71 7552 -6.41 0.02 19 cracker EDC96 313.85 7582 -6.31 0.14 2 cracker EDC96 317.89 7721 -6.39 0.05 4 cracker EDC96 318.47 7737 -6.34 0.03 2 cracker EDC96 320.09 7800 -6.28 0.05 2 cracker EDC96 321.70 7853 -6.42 0.05 3 sublimation EDC96 324.82 7971 -6.30 0.12 2 cracker EDC96 326.38 8041 -6.55 0.08 4 cracker EDC96 330.31 8166 -6.47 0.01 2 cracker EDC96 338.48 8461 -6.50 NAN 1 sublimation EDC96 338.50 8462 -6.38 0.08 2 cracker EDC96 341.25 8561 -6.45 0.09 4 cracker EDC96 349.54 8852 -6.50 0.03 2 cracker EDC96 352.45 8968 -6.39 NAN 1 sublimation EDC96 359.87 9212 -6.48 0.02 2 cracker EDC96 369.35 9519 -6.46 NAN 1 sublimation EDC96 369.37 9520 -6.43 0.09 3 cracker EDC96 374.94 9712 -6.49 0.06 2 cracker EDC96 379.71 9891 -6.61 0.07 4 cracker EDC96 382.02 9971 -6.55 0.05 3 sublimation EDC96 385.27 10086 -6.64 0.02 3 cracker EDC96 390.28 10282 -6.49 0.04 2 cracker EDC96 396.18 10507 -6.57 NAN 2 cracker EDC96 396.20 10507 -6.63 0.12 1 sublimation EDC96 401.79 10721 -6.50 0.07 4 cracker EDC96 403.83 10787 -6.50 0.04 4 cracker EDC96 406.05 10874 -6.58 0.03 2 cracker EDC96 407.24 10919 -6.72 0.09 4 cracker EDC96 409.58 11003 -6.50 0.00 2 cracker EDC96 409.64 11005 -6.63 NAN 1 sublimation EDC96