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Outline 

• Recap of tasks proposed for the CLARREO SDT. 

• Pan-spectral development update. 

• Simulations of different cloud feedback strengths 

• Conclusion and discussion. 
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Proposed Tasks for the CLARREO SDT 

• The Berkeley group has proposed to contribute the 

following to the CLARREO SDT: 

– Utilization of simulated CLARREO data to estimate change 

detection time in SW reflectance spectra 

– Production of pan-spectral (SW+IR) OSSE spectra. 

– Interfacing different scenarios (varying forcings and feedbacks) 

of CCSM3 into the CLARREO OSSE framework. 

– Production and analysis of spectra derived from different orbits. 

– Development and implementation of tools to produce OSSE 

spectra based on CMIP5 database. 
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Summary of simulations 

• We have an operational Observing System Simulation 

Experiment (OSSE) framework as described in Feldman 

et al, JGR [2011]. 

• We have simulated SW reflectance and LW radiance 

spectra based on an anthropogenically-forced and an 

unforced CCSM3 integrations of 21st Century. 

• Signal analysis on the SW OSSE results indicates 

spectral measurements can detect climate change faster 

than broadband measurements [Feldman et al, 2011 

accepted]. 
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A2 Clear-Sky September Time Series 
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A2 All-Sky September Time Series 
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Validation of LW Simulations 

• Upwelling TOA 

broadband fluxes have 

been validated for the 

clear-sky LW OSSE 

simulations against 

CAM RT. 

• LW thin clouds have 

been validated. 

• LW treatment of multi-

layer optically thick 

clouds are a WIP. 
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• We have OSSE data from several runs all forced only 

with CO2 increasing at 1% per year. 

• Simulations are at T31 (~ 3.75°), T42 (~2.8°), and T85 

(1.4°) horizontal resolutions. 

• Cloud feedbacks are stronger for higher spatial resolution 

models 

• Due to boundary-layer parameterizations that lead to 

over-prediction of low-level cloud fraction from 

inefficient mixing of drier air in the boundary layer. 

 

 

Forcing and Feedback in Simulations 

CCSM3 Feedback strengths (W/m2/°C) 

Model λ lw clr λ lw cld λ sw clr λ sw cld 

T31 1.5 -0.32 0.7 -0.63 

T42 1.52 -0.33 0.87 -0.61 

T85 1.62 -0.41 0.83 -0.41 Kiehl et al 2006 



Results arising from differing feedbacks 
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Kiehl et al 2006 

• Identical physics 

modulo low-cloud 

feedback. 

• Changes in 

radiative surface 

temperature and 

low-cloud amount 

arise solely from a 

change in low-cloud 

feedback strength. 



Δ Clear-sky broadband albedo 
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Broadband trends are associated with changes in snow, and sea ice and H2O. 

• Spatial and temporal structure of signals are similar 

between different model runs. 



Δ All-sky broadband albedo 
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Broadband trends are associated with changes in clouds, snow, and sea-ice. 

• Spatial and temporal structure of signals are distinct at 

equator and NH high latitudes. 



Δ Clear-sky OLR 
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Broadband trends are associated with water vapor and temperature. 

• Small differences between the model runs exist at NH 

mid-latitudes. 



Δ All-sky OLR 
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Broadband trends from water vapor, temperature, and, to a lesser extent, low clouds. 

• Small differences between the model runs exist at NH 

mid-latitudes. 



Spectral Signatures of Cloud Feedbacks 

• As with previous OSSE results, the spectral signatures 

of cloud feedbacks are broadband, but H2O overtone 

lines and VIS vs NIR contain significant information. 
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Time Series Comparison Analysis 
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• We utilize the formulae from Weatherhead et al [1998] 

and described in Feldman et al [JGR, accepted] to 

estimate the time required to differentiate two time series. 

• Autocorrelation of noise process from constant (1x) 

CO2 simulation. 

• Linear secular trend derived from the difference of the 

two time series. 

• Trend and noise assumed to be stationary. 

• The goal is to quantify how quickly we could distinguish 

climate systems with higher/lower sensitivity using 

spectral vs. broadband measurements. 



Time to detection for climate change 
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Trends in albedo 

and reflectance are 

superimposed on 

natural variability. 



Time to detection for climate change 
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Trends in albedo 

and reflectance are 

superimposed on 

natural variability. 

Time to detection = 

time to exceed  

95% of variability 



Formula for Change Detection 

• The time required to detect 

changes in an observation 

increases from: 
– Natural variability 

– Measurement uncertainty 

– Uncertainty in noise and trend 

estimation from a short time series. 
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Detecting change vs differentiating feedbacks 

• We start by analyzing the 

times required to differentiate 

climates of different 

sensitivities using broadband 

data. 
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T31 change 

detection time 

T31 vs T42 

differentiation 

T31 vs T85 

differentiation 

T31 change 

detection time 

T31 vs T42 

differentiation 

T31 vs T85 

differentiation 

CCSM3 Differentation (years) 

Model OLR OLRC αall αclr 

T31 35 35 58 31 

T42 vs T31 75 74 45 48 

T85 vs T31 58 59 46 46 



Conclusions 
• With more OSSE simulations, we will be able to evaluate the utility of 

spectral measurements vs. broadband time-series to differentiate among 

climates of varying sensitivities. 

• This method could identify whether climate models with low/high 

sensitivity best match the observational record. 

• We have begun to use OSSEs to isolate the spectral signatures of low-

cloud feedbacks from a set of CCSM simulations. 

– Time records of broadband albedo and OLR for models with different low-

cloud feedbacks only begin to diverge after several decades. 
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Future Directions 

• Finish validation of MODTRAN LW clouds with CAM RT. 

• High throughput of OSSE calculations for spectral 

comparison of T31, T42, and T85 simulations. 

• PC methods for faster change detection. 

• Joint analysis of long-term SCIAMACHY record  

• Lay the groundwork for OSSE simulations using the 

reporting framework for CMIP5. 
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Extra Slides 
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Δ CLDHGH 
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Similar trends between model resolution runs except at high latitudes. 

 



Δ CLDLOW 
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Differences exist at most latitudes. 

 



Δ CLDTOT 
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Similar trends between model resolution runs except at high latitudes. 

 



Δ TMQ 
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Similar trends between model resolution runs except in mid-lat NH. 

 



Δ FSNO 
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T42 resolution shows the largest trends at high latitudes. 

 



Δ ICEFRAC 
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Ice fraction decrease is stronger with higher-resolution runs. 

 


