Assessing the Effects of Uncertainty in the IR Measurements on
 Derivation of Spectral Fingerprints Temperatures

Nipa Phojanamongkolkij, Marty Mlynczak, Joe Walker, Seiji Kato, Dave Kratz, Xu Liu, Fred Rose, and Patrick Taylor

NASA Langley Research Center
CLARREO SDT Meeting
May 17-19th, 2011

Agenda

- Background/Objectives
- Preliminary Framework
- Detail Analysis
- Input, Method, Output definitions
- Perfect vs. CLARREO instruments
- Outstanding Questions
- Instrument Bias Exploration
- Conclusion/Next Steps

Background

* Current IR systematic error requirement is $0.1 \mathrm{~K}(3-\mathrm{k})$ across wavenumbers of 200-2000 $\mathrm{cm}-1$ for all scene temperatures of 200-300K.

Objectives

* To determine an allowable IR systematic error distribution across the specified wavenumbers and scene temperatures that will still enable the derivation of physical parameters (e.g., water vapor feedback, etc.)
* To help defining IR requirement.

Preliminary Framework

Current Study

- Inputs
- Datasets: the radiance differences of all-sky CCCMA from Huang et al. [2010].
- Instrument bias function: 0.1 K every wavenumbers (using scene temperatures from Seiji's TB zonal annual averages)
- Perfect instrument
- To study a 20-year expected change, the radiance difference is decreased by a factor of 10.
- CLARREO instrument
- Add 0.2 K bias to the perfect instrument's data
- Method
- Huang et al. [2010]
- Outputs
- Performance measures of retrieval degradation.

Zone 1
Zone 2

Zone 8

Zone 14

Wavenumber

Zone 3
Zone 4

Zone 9

Zone 15

Zone 10

Zone 16

Zone 5
Zone 6

Zone 11

Zone 17

Zone 12

Zone 18

Signal Signatures

Perturbed all effects - Perfect

(Blue $=$ Retrieval Mean of Perfect, Green $=$ Retrieval Uncertainty, Gray $=0.03 \mathrm{~K}(1-\mathrm{k})$ accuracy)

Define:
SNR(Perfect) = Retrieval Mean of Perfect / Retrieval Uncertainty of Perfect

Perturbed all effects - CLARREO

(Red $=$ Retrieval Mean of CLARREO, Dark Green $=$ Retrieval Uncertainty, Gray $=0.03 \mathrm{~K}(1-\mathrm{k})$ accuracy)

Define: \quad SNR(CLARREO) $=$ Retrieval Mean of CLARREO / Retrieval Uncertainty of CLARREO

Example: All effects of Zone 10

(Blue $=$ Perfect, Red $=$ CLARREO, Gray $=$ R(0.2 K$)$)

Yovs. Yo

FEp vs. FEC

Yo(hat) vs. Yc(hat)

Delta FEvs. 0.2 K

SNR: Perturbed all effects - All zones have SNR(clarreo) < SNR(Perfect).

Blue $=$ Perfect, Red $=$ CLARREO, Magenta $=10: 1$ SNR

Lower Trop Cloud - Perfect

$($ Blue $=$ Retrieval Mean of Perfect, Green $=$ Retrieval Uncertainty, Gray $=0.03 \mathrm{~K}(1-k))$

Lower Trop Cloud - CLARREO

(Red $=$ Retrieval Mean of CLARREO, Dark Green $=$ Retrieval Uncertainty, Gray $=0.03 \mathrm{~K}(1-k))$

SNR: Lower Trop Cloud
Blue $=$ Perfect, Red $=$ CLARREO, Magenta $=10: 1$ SNR

CO_{2} - Perfect

(Blue $=$ Retrieval Mean of Perfect, Green $=$ Retrieval Uncertainty, Gray $=0.03 \mathrm{~K}(1-\mathrm{k}))$

CO_{2} - CLARREO
$($ Red $=$ Retrieval Mean of CLARREO, Dark Green $=$ Retrieval Uncertainty, Gray $=0.03 \mathrm{~K}(1-k))$

Blue $=$ Perfect, Red $=$ CLARREO, Magenta $=10: 1$ SNR

${ }_{3}^{\text {Tone }}$. 6

Zone
SoN- 60 N

$\mathrm{Z}_{0.10 \mathrm{~s}} 9$

SDT05182011_NP.pdf

\%Detection of Perfect and CLARREO

- \%Detection = Data with SNR \geq threshold / Total data
- Total data = Number of data in all wavenumbers, all zones, and all effects that its radiance ≥ 0
\%Detection vs. SNR

Outstanding questions

- Fingerprinting retrieval degradation measures
- What are the right measures to achieve the objectives?
- \%Detection based on SNR
- Time to detect trend
- Others?
- How do we know we achieve them?
- Degradation (from Perfect) of \%Detection $\leq X$
- Degradation of time to detect trend $\leq Y$
- Others?
- Counter-intuitive on no degradation on the retrieval spectra when instrument is not perfect.
- Signal shapes do not evolve over time?

Instrument Bias Exploration

- Exploring the bias distributions of three ranges:
$*<6 \mu \mathrm{~m}\left(1667-2760 \mathrm{~cm}^{-1}\right)=\{0.1 \mathrm{~K}, 0.3 \mathrm{~K}\}$
$6-25 \mu \mathrm{~m}\left(400-1666 \mathrm{~cm}^{-1}\right)=\{0.05 \mathrm{~K}, 0.15 \mathrm{~K}\}$
$>25 \mu \mathrm{~m}\left(50-399 \mathrm{~cm}^{-1}\right) \quad=\{0.1 \mathrm{~K}, 0.2 \mathrm{~K}\}$
$>$ For example, the bias distribution of ($0.1 \mathrm{~K}, 0.05 \mathrm{~K}, 0.1 \mathrm{~K}$) for ($<6 \mu \mathrm{~m}, 6-25 \mu \mathrm{~m},>25 \mu \mathrm{~m}$), respectively.
$>$ Total of 8 distributions (2*2*2) are explored.

\%Detection by Effects (all zones combined)

CO 2

StratWV

TropWV

Strat Temp

TropTemp

SurfTemp

Run 2 additional bias distributions:
 $(>25,6-25,<6 \mu \mathrm{~m})=(0.1,0.1,0.3)$ and $(0.2,0.1,0.3)$
 CCCMA - Percent Detection vs. SNR

\%Detection by Effects (all zones combined)

\%Detection of TropWV and SurfTemp effects can be degraded if $>25 \mu \mathrm{~m}$ is 0.2 K .

StratW

TropWV

StratTemp

SDT05182011_NP.pdf

UpperCld

Repeat the analysis with MIROC dataset

MIROC - Percent Detection vs. SNR

MIROC - \%Detection by Effects (all zones combined)

StratWV

TropWV

SNR

SurfTemp

Conclusion/Next Steps

We have demonstrated a framework of applying fingerprinting (based on Huang et al. [2010]) to help defining IR systematic error distribution across the specified wavenumbers and scene temperatures that will still enable the retrieval of atmospheric spectra.
Next Steps

- Performance metrics definition.
- Counter-intuitive on no degradation on the retrieval spectra when instrument is not perfect.
- Signal shapes do not evolve over time?

BACK-UP

Datafiles (Huang et al. 2010)

Experiment name	Variable suppressed	Spectral radiance change
co2	CO 2 (fixed at 280ppmv), $r_{c o 2}$	$\delta R_{c o 2}=R\left(r_{c o 2}, \ldots\right)-R\left(\bar{r}_{c o 2}, \ldots\right)$
ts	Surface temperature, T_{s}	$\delta R_{T s}=R\left(\ldots, T_{s}, \ldots\right)-R\left(\ldots, \bar{T}_{s}, \ldots\right)$
ta-trop	Tropospheric temperature, $T_{\text {trop }}$	$\delta R_{\text {Trop }}=R\left(\ldots, T_{\text {rrop }}, \ldots\right)-R\left(\ldots, \bar{T}_{\text {rop }}, \ldots\right)$
ta-strat	Stratospheric temperature, $T_{\text {strat }}$	$\delta R_{\text {Tssat }}=R\left(\ldots, T_{\text {strat }}, \ldots\right)-R\left(\ldots, \bar{T}_{\text {strat }}, \ldots\right)$
hus-trop	Tropospheric water vapor, $q_{\text {trop }}$	$\delta R_{\text {qrop }}=R\left(\ldots, q_{\text {trop }}, \ldots\right)-R\left(\ldots, \bar{q}_{\text {top }}, \ldots\right)$
hus-strat	Stratospheric water vapor, $q_{\text {strat }}$	$\delta R_{\text {gstrat }}=R\left(\ldots, q_{\text {strat }}, \ldots\right)-R\left(\ldots, \bar{q}_{\text {stat }}, \ldots\right)$
cld-lowertrop	Lower tropospheric cloud, Clow	$\delta R_{\text {clow }}=R\left(\ldots, C_{\text {low }}, \ldots\right)-R\left(\ldots, \bar{C}_{\text {low }}, \ldots\right)$
cld-midtrop	Middle tropospheric cloud, $C_{\text {mid }}$	$\delta R_{\text {Cmid }}=R\left(\ldots, C_{\text {mid }}, \ldots\right)-R\left(\ldots, \bar{C}_{\text {mid }}, \ldots\right)$
cld-uppertrop	Upper tropospheric cloud, Chgh	$\delta R_{\text {Chgh }}=R\left(\ldots, C_{h g h}\right)-R\left(\ldots, \bar{C}_{h g h}\right)$
all	$\begin{aligned} & \text { All variables - total } \\ & \text { signal } \end{aligned}$	$\begin{gathered} \delta R_{\text {total }}=R\left(r_{\text {co2 }}, T_{S}, T_{\text {trop }}, T_{\text {strat }}, q_{\text {rop }}, q_{\text {strat }}, C_{\text {low }}, C_{\text {mid }}, C_{\text {hgh }}\right)- \\ R\left(\bar{r}_{\text {co2 }}, \bar{T}_{s}, \bar{T}_{\text {trop }}, \bar{T}_{\text {strat }}, \bar{q}_{\text {roop }}, \bar{q}_{\text {strat }}, \bar{C}_{\text {low }}, \bar{C}_{\text {mid }}, \bar{C}_{\text {hgh }}\right) \end{gathered}$

$$
\begin{aligned}
& \delta O L R_{x}=\pi \int \delta R_{x} d v \\
& \delta R_{x} \text { STO }\left\{05182011 _N P . p d f\right.
\end{aligned}
$$

Perfect instrument

$\hat{y}, S_{1} \hat{a}_{1}, \ldots, S_{9} \hat{a}_{9}, \mathrm{FE}$

$$
y=S_{1} a_{1}+\ldots+S_{9} a_{9}+\varepsilon
$$

Estimated by
$\hat{y}=S_{1} \hat{a}_{1}+\ldots+S_{9} \hat{a}_{9}$

Fitting Error $(\mathrm{FE})=y-\hat{y}$

CLARREO instrument

$$
\begin{aligned}
& \mathrm{y}_{\text {(CLARREO) }}=\mathrm{y}+\mathrm{R}(0.2 \mathrm{~K}) \\
& \hat{y}_{(C L A R R E O)}, S_{1} \hat{a}_{(C)}, \ldots, S_{9} \hat{a}_{9(C)}, \mathrm{FE}_{(\mathrm{C})} \\
& y_{(\text {CLARREO })}=S_{1} a_{1(C)}+\ldots+S_{9} a_{9(C)}+\varepsilon_{(C)} \\
& \text { Estimated by } \\
& \hat{y}_{(\text {CLARREO })}=S_{1} \hat{a}_{1(C)}+\ldots+S_{9} \hat{a}_{9(C)} \\
& \mathrm{FE}_{(\mathrm{C})}=y_{(\text {CLARREO })} \hat{y}_{(\text {(CLARREO })}
\end{aligned}
$$

Let $\quad \Delta \mathrm{FE}=\mathrm{FE}_{(\mathrm{C})}-\mathrm{FE}=y_{(\text {(CLARREO })}-\hat{y}_{(C L A R R E O)}-y+\hat{y} \approx y_{(C L A R R E O)}-y \approx R(0.2 K)$

MIROC - Percent Detection vs. SNR

Measurement Data - Zone 10

Measurement Data - Zone 10

Measurement Data - Zone 10

Perturbed All Retrieval - Zone 10

Perturbed All Retrieval - Zone 10

Perturbed All Retrieval - Zone 10

Delta Retrieval - Zone 10

Delta Retrieval - Zone 10

Delta Retrieval - Zone 10

