Assessing the Effects of Uncertainty in the IR Measurements on Derivation of Spectral Fingerprints Temperatures

1

Nipa Phojanamongkolkij, Marty Mlynczak, Joe Walker, Seiji Kato, Dave Kratz, Xu Liu, Fred Rose, and Patrick Taylor NASA Langley Research Center CLARREO SDT Meeting May 17-19th, 2011

Agenda

- Background/Objectives
- Preliminary Framework
- Detail Analysis
 - Input, Method, Output definitions
 - Perfect vs. CLARREO instruments
 - Outstanding Questions
- Instrument Bias Exploration
- Conclusion/Next Steps

Background

Current IR systematic error requirement is 0.1K (3-k) across wavenumbers of 200-2000 cm-1 for all scene temperatures of 200-300K.

Objectives

- To determine an allowable IR systematic error distribution across the specified wavenumbers and scene temperatures that will still enable the derivation of physical parameters (e.g., water vapor feedback, etc.)
- To help defining IR requirement.

Preliminary Framework

Current Study

- Inputs
 - Datasets: the radiance differences of all-sky CCCMA from Huang et al.
 [2010].
 - Instrument bias function: 0.1K every wavenumbers (using scene temperatures from Seiji's TB zonal annual averages)
 - Perfect instrument
 - To study a 20-year expected change, the radiance difference is decreased by a factor of 10.
 - CLARREO instrument
 - Add 0.2K bias to the perfect instrument's data
- Method
 - Huang et al. [2010]
- Outputs
 - Performance measures of retrieval degradation.

Instrument Bias of 0.1K everywhere

Signal Signatures

Perturbed all effects - Perfect

(Blue = Retrieval Mean of Perfect, Green = Retrieval Uncertainty, Gray = 0.03K (1-k) accuracy)

Define:

e: SNR(Perfect) = Retrieval Mean of Perfect / Retrieval Uncertainty of Perfect

Perturbed all effects - CLARREO

9

(Red = Retrieval Mean of CLARREO, Dark Green = Retrieval Uncertainty, Gray = 0.03K (1-k) accuracy)

Define: SNR(CLARREO) = Retrieval Mean of CLARREO / Retrieval Uncertainty of CLARREO

Example: All effects of Zone 10

SNR: Perturbed all effects - All zones have SNR(CLARREO) < SNR(Perfect).¹¹

Blue = Perfect, Red = CLARREO, Magenta = 10:1 SNR

Lower Trop Cloud - Perfect

(Blue = Retrieval Mean of Perfect, Green = Retrieval Uncertainty, Gray = 0.03K (1-k))

Lower Trop Cloud - CLARREO

(Red = Retrieval Mean of CLARREO, Dark Green = Retrieval Uncertainty, Gray = 0.03K (1-k))

SNR: Lower Trop Cloud

Blue = Perfect, Red = CLARREO, Magenta = 10:1 SNR

CO₂ - Perfect

(Blue = Retrieval Mean of Perfect, Green = Retrieval Uncertainty, Gray = 0.03K (1-k))

CO₂ - CLARREO

(Red = Retrieval Mean of CLARREO, Dark Green = Retrieval Uncertainty, Gray = 0.03K (1-k))

SNR: CO₂

Blue = Perfect, Red = CLARREO, Magenta = 10:1 SNR

%Detection of Perfect and CLARREO

- %Detection = Data with SNR ≥ threshold / Total data
- Total data = Number of data in all wavenumbers, all zones, and all effects that its radiance ≥ 0

Outstanding questions

- Fingerprinting retrieval degradation measures
 - What are the right measures to achieve the objectives?
 - %Detection based on SNR
 - Time to detect trend
 - Others?
 - How do we know we achieve them?
 - Degradation (from Perfect) of %Detection $\leq X$
 - Degradation of time to detect trend $\leq Y$
 - Others?
- Counter-intuitive on no degradation on the retrieval spectra when instrument is not perfect.
- Signal shapes do not evolve over time?

Instrument Bias Exploration

- Exploring the bias distributions of three ranges:
 - ♦ < 6 μ m (1667-2760 cm⁻¹) = {0.1K, 0.3K}
 - ↔ $6 25 \,\mu\text{m}$ (400-1666 cm⁻¹) = {0.05K, 0.15K}
 - ↔ > 25 μ m (50-399 cm⁻¹) = {0.1K, 0.2K}
 - > For example, the bias distribution of (0.1K, 0.05K, 0.1K) for (< 6 μ m, 6-25 μ m, >25 μ m), respectively.
 - > Total of 8 distributions (2*2*2) are explored.

CCCMA - Percent Detection vs. SNR

%Detection by Effects (all zones combined)

Run 2 additional bias distributions: (>25, 6-25, <6μm) = (0.1, 0.1, 0.3) and (0.2, 0.1, 0.3) CCCMA - Percent Detection vs. SNR

%Detection by Effects (all zones combined)

%Detection of TropWV and SurfTemp effects can be degraded if >25 μ m is 0.2K.

Repeat the analysis with MIROC dataset

MIROC - Percent Detection vs. SNR

MIROC - %Detection by Effects (all zones combined)²⁶

Conclusion/Next Steps

We have demonstrated a framework of applying fingerprinting (based on Huang et al. [2010]) to help defining IR systematic error distribution across the specified wavenumbers and scene temperatures that will still enable the retrieval of atmospheric spectra.

Next Steps

- Performance metrics definition.
- Counter-intuitive on no degradation on the retrieval spectra when instrument is not perfect.
- Signal shapes do not evolve over time?

BACK-UP

Datafiles (Huang et al. 2010)

Experiment name	Variable suppressed	Spectral radiance change	
co2	CO2 (fixed at 280ppmv), r _{co2}	$\delta R_{co2} = R(r_{co2}, \dots) - R(\overline{r_{co2}}, \dots) - \overline{R(r_{co2}, \dots)}$	$\rightarrow S_4$
ts	Surface temperature, T₅	$\delta R_{T_s} = R(,T_s,) - R(,\overline{T}_s,)$	$\rightarrow S_9$
ta-trop	Tropospheric temperature, T _{trop}	$\delta R_{Ttrop} = R(, T_{trop},) - R(, \overline{T}_{trop},) - $	$\rightarrow S_8$
ta-strat	Stratospheric temperature, T _{strat}	$\delta R_{Tstrat} = R(, T_{strat},) - R(, \overline{T}_{strat},)$	$\rightarrow S_7$
hus-trop	Tropospheric water vapor, q _{trop}	$\delta R_{qtrop} = R(, q_{trop},) - R(, \overline{q}_{trop},) - R(, \overline{q}_{trop},)$	$\rightarrow S_6$
hus-strat	Stratospheric water vapor, q _{strat}	$\delta R_{q_{strat}} = R(, q_{strat},) - R(, \overline{q}_{strat},) - R(, \overline{q}_{strat},)$	$\rightarrow S_5$
cld-lowertrop	Lower tropospheric cloud, C _{low}	$\delta R_{Clow} = R(, C_{low},) - R(, \overline{C}_{low},) - R(, \overline{C}_{low},)$	$\rightarrow S_1$
cld-midtrop	Middle tropospheric cloud, C _{mid}	$\delta R_{Cmid} = R(, C_{mid},) - R(, \overline{C}_{mid},)$	$\rightarrow S_2$
cld-uppertrop	Upper tropospheric cloud, C _{hgh}	$\delta R_{Chgh} = R(,C_{hgh}) - R(,\overline{C}_{hgh}) - $	$\rightarrow S_3$
all	All variables – total signal	$\delta R_{total} = R(r_{co2}, T_S, T_{trop}, T_{strat}, q_{trop}, q_{strat}, C_{low}, C_{mid}, C_{hgh}) - R(\overline{r}_{co2}, \overline{T}_S, \overline{T}_{trop}, \overline{T}_{strat}, \overline{q}_{trop}, \overline{q}_{strat}, \overline{C}_{low}, \overline{C}_{mid}, \overline{C}_{hgh})$	→ y

 $\delta OLR_x = \pi \int \delta R_x d\upsilon$ $\delta R_x SD = 0.5182011 \text{NP.pdf}$

Perfect instrument y ↓ Fingerprint

Known
S1 - S9

$$y = Sa + \varepsilon$$

$$a = (S^{T}\Sigma^{-1}S)^{-1}S^{T}\Sigma^{-1}y$$

$$\Sigma = \Sigma_{nat} + \Sigma_{shape} + \Sigma_{nl}$$

$$\varepsilon \sim N(0, \Sigma)$$

$$\hat{y}, S_{1}\hat{a}_{1}, \dots, S_{9}\hat{a}_{9}, FE$$

$$y = S_{1}a_{1} + \dots + S_{9}a_{9} + \varepsilon$$
Estimated by

$$\hat{y} = S_1 \hat{a}_1 + \ldots + S_9 \hat{a}_9$$

Fitting Error (FE) = y- \hat{y}

CLARREO instrument

$$y_{(CLARREO)} = y + R(0.2K)$$
Fingerprint

$$y_c = Sa_c + \varepsilon_c$$

$$a_c = (S^T \Sigma_c^{-1} S)^{-1} S^T \Sigma_c^{-1} y_c$$

$$\Sigma_c = \Sigma'_{nat} + \Sigma_{shape} + \Sigma'_{nl}$$

$$\varepsilon_c \sim N(0, \Sigma_c)$$

$$\hat{y}_{(CLARREO)}, S_1 \hat{a}_{1(C)}, \dots, S_9 \hat{a}_{9(C)}, FE_{(C)}$$

$$y_{(CLARREO)} = S_1 a_{1(C)} + \dots + S_9 a_{9(C)} + \varepsilon_{(C)}$$
Estimated by

$$\hat{y}_{(CLARREO)} = S_1 \hat{a}_{1(C)} + \dots + S_9 \hat{a}_{9(C)}$$

$$FE_{(C)} = y_{(CLARREO)} - \hat{y}_{(CLARREO)}$$

Let $\Delta FE = FE_{(C)} - FE = y_{(CLARREO)} - \hat{y}_{(CLARREO)} - y + \hat{y} \approx y_{(CLARREO)} - y \approx R(0.2K)$

MIROC - Percent Detection vs. SNR

%Detection

