Future Directions in Mid-Infrared Lasers for the CLARREO IR Payload

John Dykema¹, Mark Witinski², Jim Anderson¹ CLARREO SDT, April, 2013 NASA-LaRC

¹Harvard University, School of Engineering and Applied Sciences ²Eos Photonics, Cambridge, MA

On-orbit Test/Validation (OT/V) Modules

Viewing configuration providing immunity to polarization effects.

Dykema: CLARREO SDT January 2014, NASA GSFC

GSFC

MCT Optical Train for Testbed

Top View

Field of View defined by vignetting

All rays

Vignetting due to aperture stop

8279 0

7419.0 0006.01

825.84 = houordat svar 8

MZ.eSnZ rof yrtemce

| fo] poitanuai foo

Vignetting due to aperture relay stop

Aperture relay stop, corner cube

All rays

Vignetting due to aperture stop

Vignetting due to aperture relay stop

Dykema: CLARREO SDT January 2014, NASA GSFC

Definition of optical FOV by system

Calibration of Zemax radiometry

Lost energy for uniform source

Measurement Geometry

Measured radiance and uncertainties

GSFC

Calibrated unapodized reflectance spectra

Spectra, background removed

Dykema: CLARREO SDT January 2014, NASA GSFC

Inferred blackbody surface reflectance

Dykema: CLARREO SDT January 2014, NASA GSFC

Black paint options

OCEM-QCL measurements vs. NIST

Dykema: CLARREO SDT January 2014, NASA

Scattering dependence

Dependence of measured power on scattering

Using vignetting property to correct ILS

New directions: shrinking QCLs

Harvard housing with tunable collimation

Sealed housing with permanently aligned optic

Further developments for QCL applications

B18 J. Opt. Soc. Am. B/Vol. 27, No. 11/November 2010

N. Yu and F. Capasso

Wavefront engineering for mid-infrared and terahertz quantum cascade lasers [Invited]

Nanfang Yu^{1,2} and Federico Capasso^{1,3}

¹School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA ²e-mail: nyu@fas.harvard.edu ³e-mail: capasso@seas.harvard.edu

Fig. 8. (Color online) Left and right: Simulated and measured vertical far-field intensity profiles of devices with 1D collimators containing N grating grooves.

