

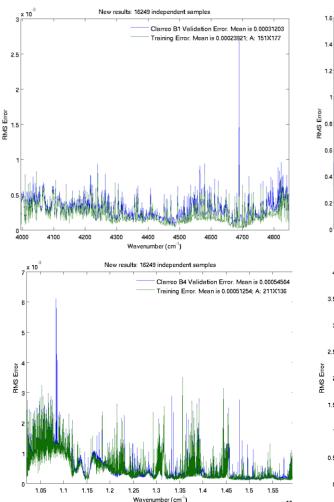
Further Development of PCRTM in Solar Spectral Region Under Multiple-Layer Cloudy Conditions

Qiguang Yang¹, Xu Liu², Wan Wu¹, Susan Kizer¹, Zhonghai Jin¹

SSAI¹, NASA LaRC², Hampton, VA 23681

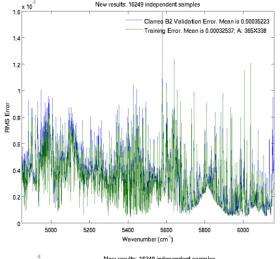
- Overview of previous PCRTM-SOLAR
- Results in Last CLARREO SDT Meeting
- Goal After Last CLARREO Meeting
- New Strategy to Accelerate PCRTM-SOLAR
- Main Results of the New PCRTM-SOLAR
 - Training
 - Validation
- Conclusion

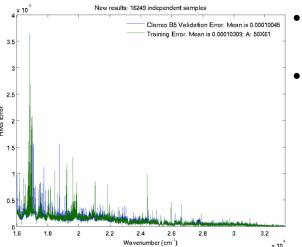
Our Previous Work: PCRTM-SOLAR

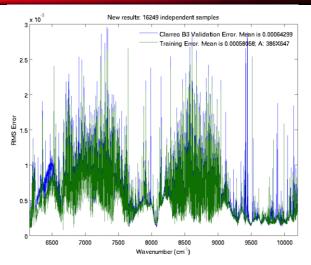

- CLARREO Reflected Solar (RS) spectrum from 300 nm to 2.5 µm with 1 cm⁻¹ resolution (29,311 channel frequencies).
- MODTRAN: need radiances at 259,029 mono frequencies
 - Real Example: qsub to CLARREO machine at NASA LaRC, 16-stream, one spectrum)
 - CPU TIME = 2 hours 39 minutes = 9540 s
- PCRTM-SOLAR: need radiances at only 1,359 mono frequencies for land surface
 - Real Example: qsub to CLARREO machine at NASA LaRC, 16-stream, one spectrum)
 - CPU TIME = 67.736237 (radiance at 1359 mono frequencies)
 - PCRTM TIME = 8.00094604E-02 (convert rmono to rchan)

0.3-2.5 μm	PCRTM-SOLAR	MODTRAN	SPEED UP
Ocean 1 cm ⁻¹	956	259029	270
Land 1 cm ⁻¹	1359	259029	190
Ocean 4 nm	279	259029	928
Land 4 nm	354	259029	731

PCRTM-SOLAR is able to treat multi-layer cloud/aerosol


PCRTM-SOLAR


Our Previous Work: Accuracy of PCRTM-SOLAR



PCRTM-SOLAR

x 10

- 1359 mono frequencies were selected from training.
- The validation results indicate that the accuracy of PCRTM-SOLAR is very high, mean over wavenumber of the RMS is 1x10⁻⁴ to 6.5x10⁻⁴.

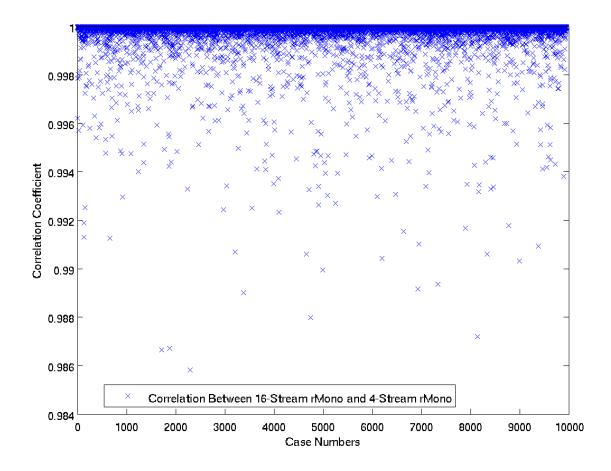
- We developed a ultrafast high accuracy PCRTM-SOLAR model for one-layer of cloud/aerosol (One-Layer-Cloud/Aerosol PCRTM-SOLAR):
 - Look up tables (compressed)
 - No need to call DISORT
 - Independent of stream number
 - Orders faster than previous PCRTM-SOLAR
- Disadvantage:

Hard to expand to multiple-layer cloud/aerosol cases

- To develop a new PCRTM-SOLAR for multiplelayer cloud/aerosol cases:
 - Need to be faster than previous PCRTM-SOLAR
 - Need to be with very high accuracy (comparable to previous PCRTM-SOLAR)
 - Able to treat all cases the previous PCRTM-SOLAR can treat.

- Speed and accuracy dilemma in MODTRAN/DISORT
 - The accuracy depends on stream number N.
 Larger N usually gives higher accuracy.
 - The computation time is approximately proportional to N³.
- Do we have to compromise between accuracy and speed? (We want both!!!)

• What we need:


PCRTM-SOLAR

- Speed: 2-stream or 4-stream
- Accuracy: N-stream (N >> 2)
- The link between 4-stream and N-stream (Land surface, 1 cm⁻¹ resolution case):

$$r_{Nstr}^{1359} = r_{4str}^{1359} + (r_{Nstr}^{1359} - r_{4str}^{1359}) = r_{4str}^{1359} + \mathsf{D}r^{1359}$$

They are highly related!

• What we need:

PCRTM-SOLAR

- Speed: 2-stream or 4-stream
- Accuracy: N-stream (N >> 2)
- The link between 4-stream and N-stream (Land surface, 1 cm⁻¹ resolution case):

$$r_{Nstr}^{1359} = r_{4str}^{1359} + (r_{Nstr}^{1359} - r_{4str}^{1359}) = r_{4str}^{1359} + \mathsf{D}r^{1359}$$

They are highly related!

• Training the small difference:

$$\mathsf{D}r^{1359} = B^{1359 \times M} \cdot \mathsf{D}r^{M}$$

With M << 1359.

PCRTM-SOLAR

• The obtained radiance with N-stream accuracy is thus given by:

$$r_{Nstr}^{1359} = r_{4str}^{1359} + B^{1359 \times M} \cdot \mathsf{D}r^{M} = r_{4str}^{1359} + B^{1359 \times M} \cdot (r_{Nstr}^{M} - r_{4str}^{M})$$

- Don't need N-stream calculation at all 1359 frequencies;
- Need N-stream calculation at M frequencies among the 1359 frequencies. (M << 1359)
- Need 4-stream calculation at all 1359 frequencies.

• Estimated speed using the new strategy:

time ratio = -

PCRTM-SOLAR

time for N-stream (all 1359 frequencies)

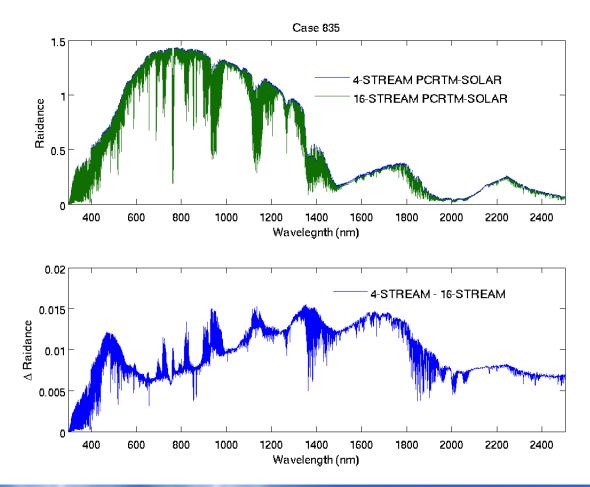
time for 4-stream (all 1359 frequencies) + time for N-stream (M << 1359 frequencies)

For 16-stream accuracy: N = 16. Assume M = 35

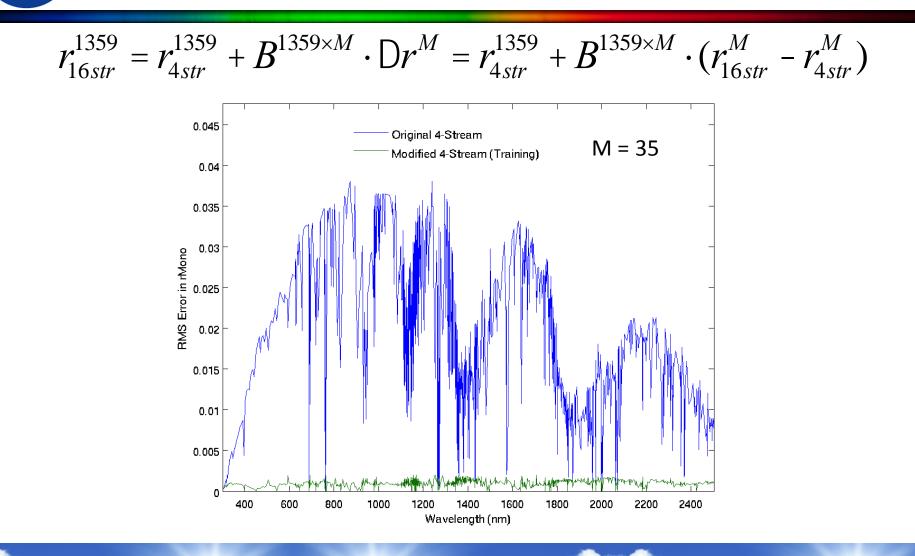
Method	Number of frequencies	Speed Up
MODTRAN	259,029	1
PCRTM-SOLAR	1359	190
MODIFIED PCRTM-SOLAR	1359 (4 stream) + 35 (16 stream)	4560

M = 35

The modified PCRTM-SOLAR may complete one spectrum calculation in ~ 3 seconds, rather than ~ 3 hours (MODTRAN).



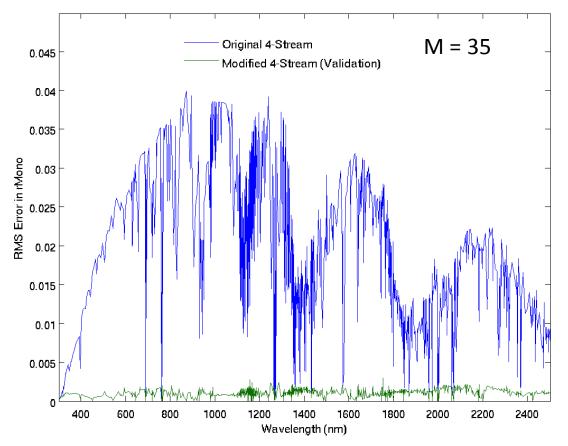
- Channel radiances as well as mono radiances of 9957 cases were simulated for land surface with different
 - ATM ID, SZA, VZA, AZA, AOD, Water Vapor, Absorption, Scattering, Cloud (1-layer, 2-layer, 3-layer, ice, water, clear sky), Surface BRDF, etc.
- 9000 cases were used for training
- 957 cases were used for validation



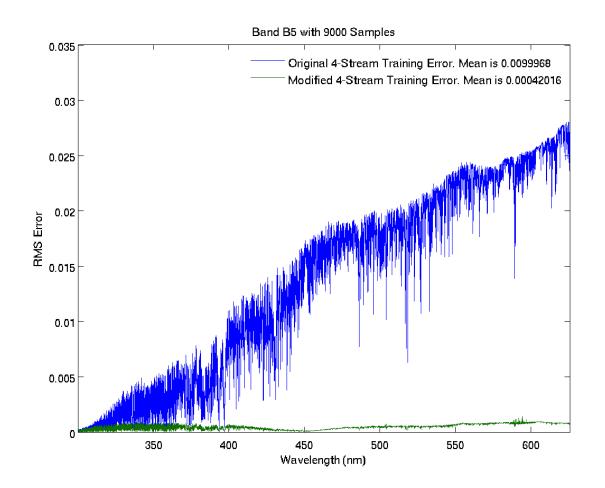
The Difference Between 16-Stream and 4-Stream Results in PCRTM-SOLAR

Typical difference between 4-stream radiance and 16-stream radiance:

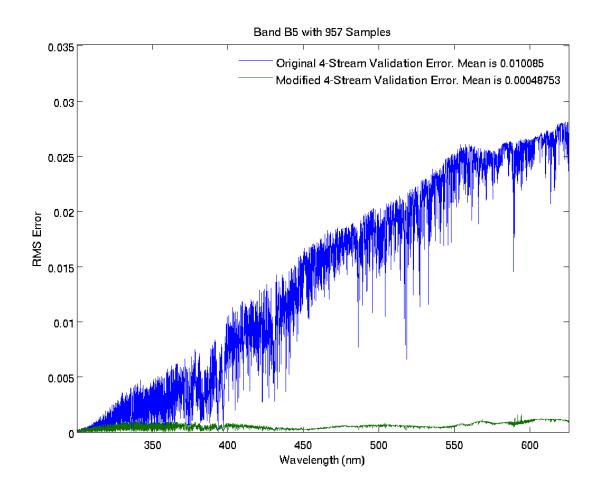
New Strategy: rMono Training



PCRTM-SOLAR

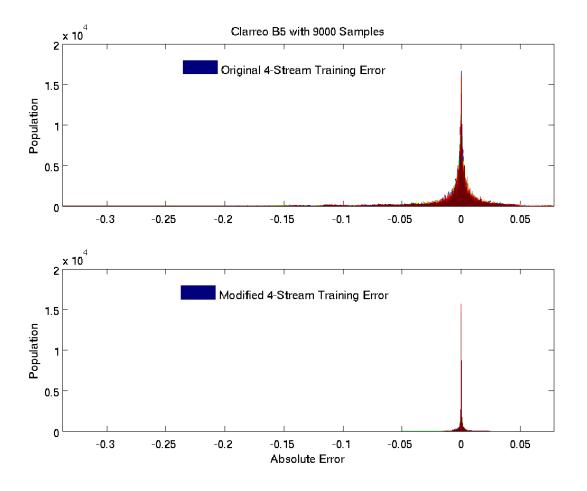

New Strategy: rMono Validation

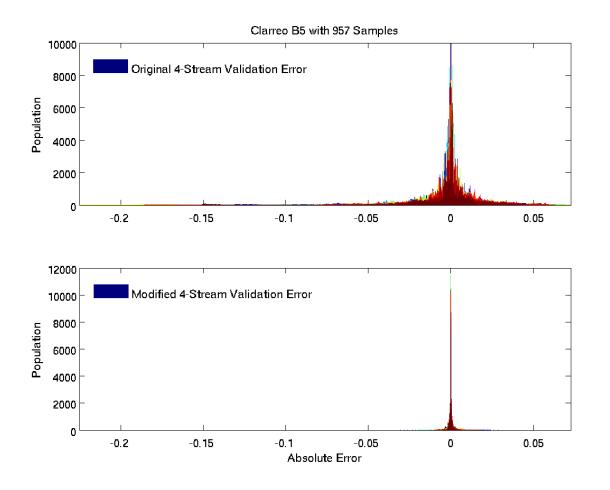
957 independent cases:



New Strategy: rChan Training Error

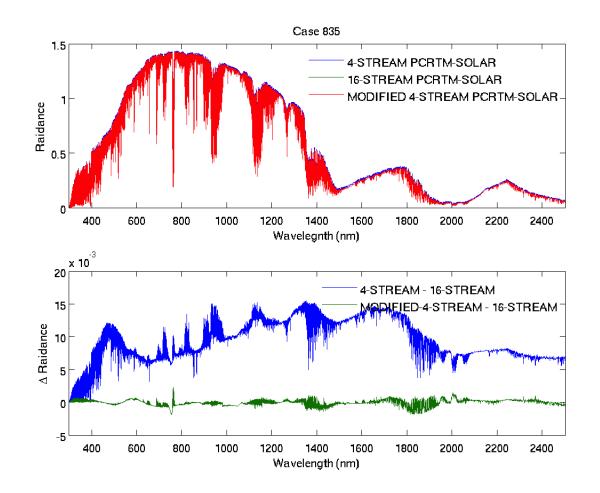
New Strategy: rChan Validation Error



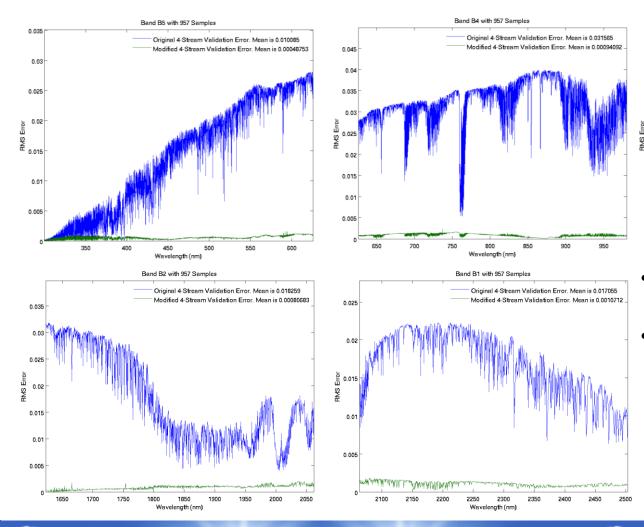

PCR

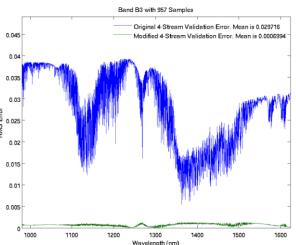
M-SOLAR

New Strategy: rChan Training Absolute Error


New Strategy: rChan Validation Absolute Error

PCRTM-SOLAR


New Strategy: Typical Channel Radiance


The modified 4-stream PCRTM-SOLAR provides results comparable to previous 16-stream PCRTM-SOLAR.

16-stream accuracy at a 4stream cost.

Results for Whole CLARREO RS Spectral Region

PCRTM-SOLAR

- 35 mono frequencies were selected from training.
- The validation results indicate that the accuracy is high, mean over wavenumber of the RMS is 4.8x10⁻⁴ to 1.0x10⁻³.

- A new method was developed to simulate RS spectrum for multi-layer cloud/aerosol condition in the range of 300 nm to 2.5 μm.
- Fast speed was achieved by calculating mono radiance with 4-stream MODTRAN at 1359 preselected frequencies.
 - 4560 times faster than 16-stream MODTRAN
 - 24 times faster than 16-stream previous PCRTM-SOLAR
- Accuracy was greatly improved by calculating mono radiance with 16stream MODTRAN at only 35 preselected frequencies.
 - RMS is $\sim 10^{-4}$ to 10^{-3} (comparable to previous 16-stream PCRTM-SOLAR)
- May be easily expanded to higher accuracy
 - Using higher stream number to compute mono radiances in MODTRAN
 - Fellow the same procedure to train the data
- Further works

- Ocean surface
- Integrated into linearized radiative transfer model