Testing Climate Models with CLARREO: Feedbacks and Equilibrium Sensitivity

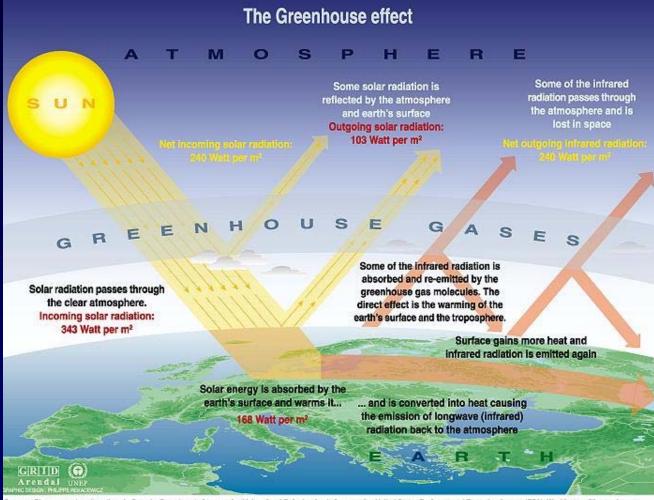
Stephen Leroy, John Dykema, Jon Gero, Jim Anderson Harvard University, Cambridge, Massachusetts

21 October 2008

Talk Outline

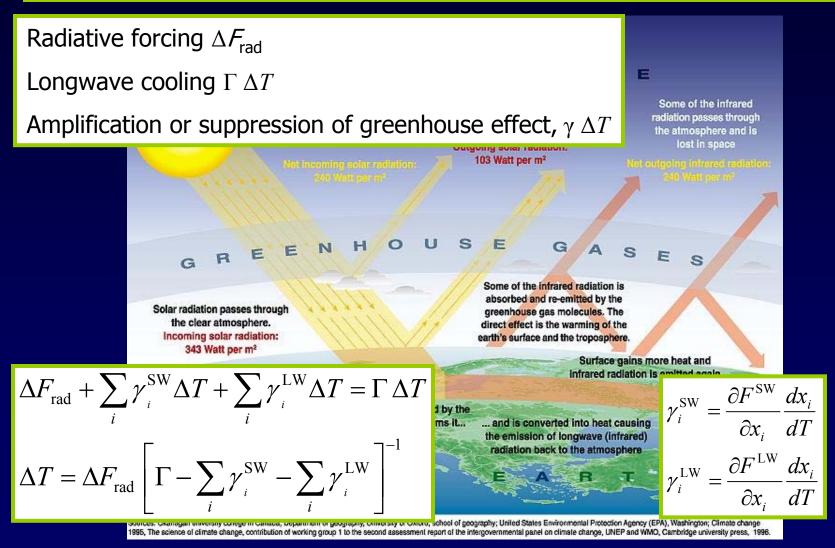
- Feedbacks and Equilibrium Sensitivity
- Climate OSSE
 - Optimal Methods/Multi-pattern regression
 - Response: GPS Radio Occultation (RO)
 - Feedbacks: Clear-sky Thermal IR Spectra
- Discussion

Climate Feedback



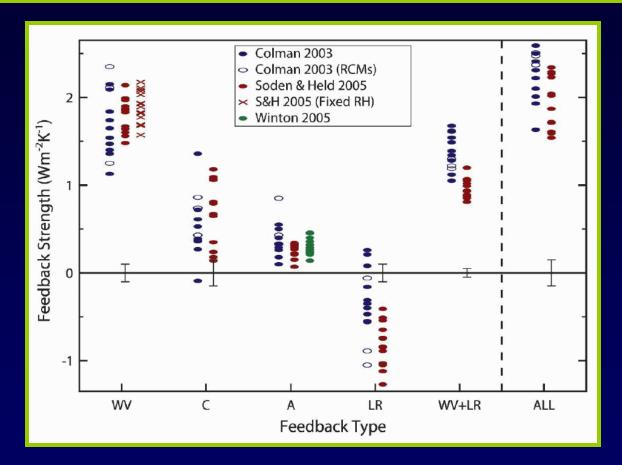
Sources: Okanagan university college in Canada, Department of geography, University of Oxford, school of geography; United States Environmental Protection Agency (EPA), Washington; Climate change 1995, The science of climate change, contribution of working group 1 to the second assessment report of the intergovernmental panel on climate change, UNEP and WMO, Cambridge university press, 1996.

Climate Feedback (2)



21 October 2008

Feedback Uncertainty



Bony, S., et al., 2006: How well do we understand and evaluate climate change feedback processes? *J. Climate*, **19**, 3445-3482.

21 October 2008

Feedbacks and Climate Prediction

Hansen, J. et al., 1985: Climate response times: Dependence on climate sensitivity and ocean mixing. *Science*, **229**, 857-859.

$$s = \frac{T(2 \times CO_2) - T(1 \times CO_2)}{F_{\text{radiative}}(2 \times CO_2) - F_{\text{radiative}}(1 \times CO_2)}$$
$$= \left(\Gamma - \sum_{i} \gamma_i^{\text{longwave}} - \sum_{i} \gamma_i^{\text{shortwave}}\right)^{-1}$$

$$\beta = (s \times \rho C_{\text{ocean}} d)^{-1}$$
$$\frac{dT}{dt} = \beta s (\Delta F_{\text{imbalance}}) = \beta (s \Delta F_{\text{radiative}} - \Delta T)$$
$$T(t) = T_0 + \beta s \int_0^t \Delta F_{\text{rad}}(t') e^{-\beta(t-t')} dt'$$

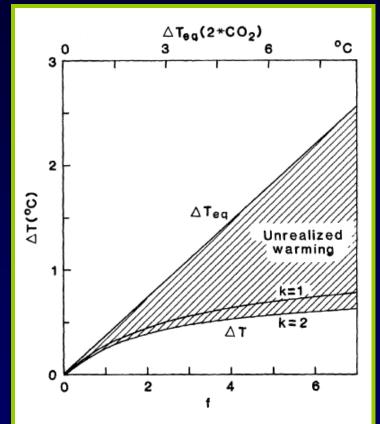


Fig. 2. Ocean surface warming (ΔT) and the equilibrium warming (ΔT_{eq}) due to CO₂ added to the atmosphere in the period 1850 to 1980 for the 1-D box diffusion ocean model as a function of f or $\Delta T_{eq}(2 * CO_2)$.

Climate OSSE: The Science of a Benchmark

Benchmark Measurement

- Traceable to international standards
- Minimize sampling
 error

Climate OSSE

- Simulate trends in observable as produced by different models
- Explore information content with various contravariant fingerprints

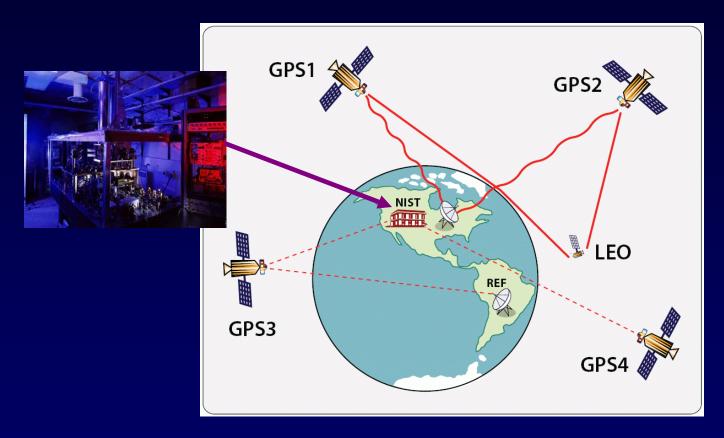
Climate Uncertainty

- Shortwave forcing
- Longwave forcing
- Climate feedbacks & sensitivity

Climate OSSE Results

- Detection time and accuracy requirements
- How measurement constrains climate predictability
- Relative redundancy with other benchmark data types

Calibration: Double Differencing



Hardy, K.R., G.A. Hajj, and E.R. Kursinski, 1994: Accuracies of atmospheric profiles obtained from GPS occultations. *Int. J. Sat. Comm.*, **12**, 463-473.

We are limited by the naturally occurring inter-annual variability of the climate system...so optimize.

Find signal amplitudes (\boldsymbol{a}_m) and uncertainty ($\boldsymbol{\Sigma}_a$) in a data set (\boldsymbol{d}) according to the signals' patterns (\boldsymbol{s}_i) against a background of natural variability, the eigenvectors and eigenvalues of which are \boldsymbol{e}_{μ} and λ_{μ} .

$$oldsymbol{lpha}_m ~=~ \mathbf{G}^{-1}\mathbf{h}$$

 $oldsymbol{\Sigma}_lpha ~=~ \mathbf{G}^{-1}$

$$h_{i} = \sum_{\mu=1}^{k} \lambda_{\mu}^{-1} \langle \mathbf{e}_{\mu}, \mathbf{s}_{i} \rangle \langle \mathbf{e}_{\mu}, \mathbf{d} \rangle$$
$$G_{i,j} = \sum_{\mu=1}^{k} \lambda_{\mu}^{-1} \langle \mathbf{e}_{\mu}, \mathbf{s}_{i} \rangle \langle \mathbf{e}_{\mu}, \mathbf{s}_{j} \rangle$$

21 October 2008

GPS Radio Occultation

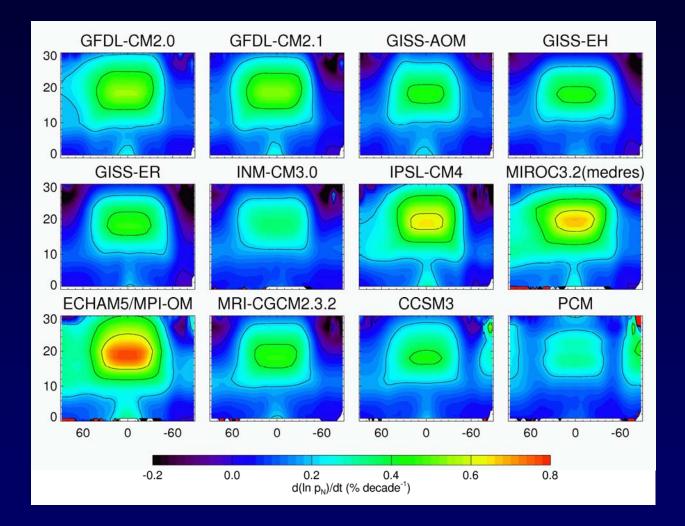
• Refractivity

$$N = (n-1) \times 10^{6} = (77.6 \,\mathrm{K} \,\mathrm{hPa^{-1}}) \frac{p}{T} + (363 \times 10^{3} \,\mathrm{K}^{2} \,\mathrm{hPa^{-1}}) \frac{p_{\mathrm{w}}}{T^{2}}$$

- "Dry" pressure $p_d(h) = (4.402 \times 10^{-4} \,\mathrm{hPa} \,\mathrm{m}^{-1}) \int_{h}^{\infty} N \,dh \cong p(h) + (7521 \,\mathrm{K}) \int_{0}^{p(h)} \frac{q \,dp}{T}$
- Geopotential height

$$h = \left[(\Phi(\mathbf{r}) - \frac{1}{2}\Omega^2 r_s^2) - (\Phi - \frac{1}{2}\Omega^2 r_s^2)_{\text{msl}} \right] / g_0$$

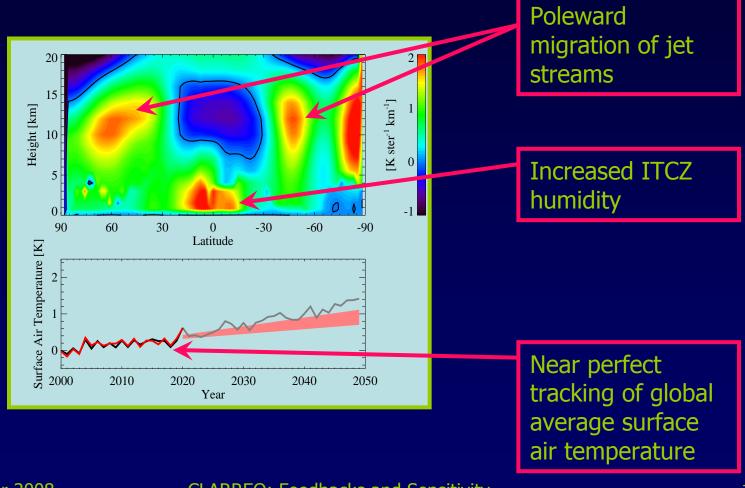
GPS RO Dry Pressure Tendency



21 October 2008

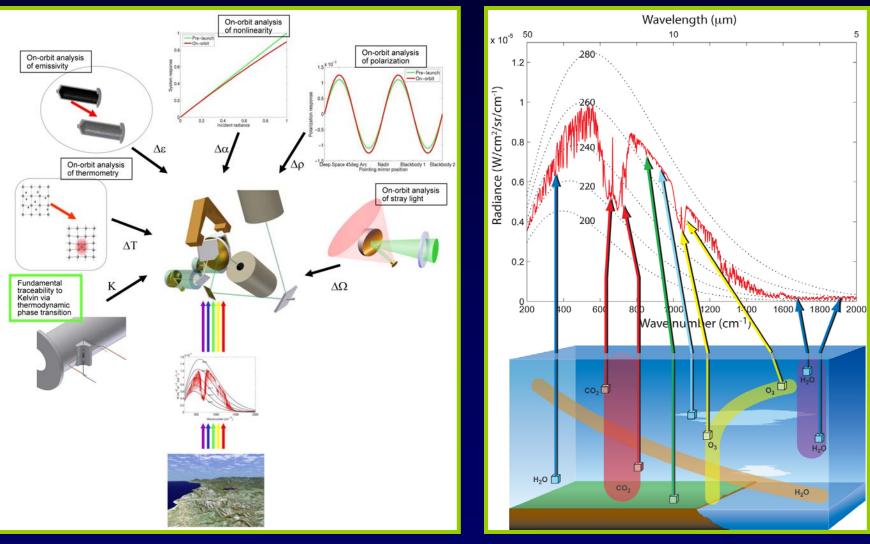
How Does GPS RO Test GCMs?

α = global average surface air temperature, *d* = GPS RO dry pressure [height]



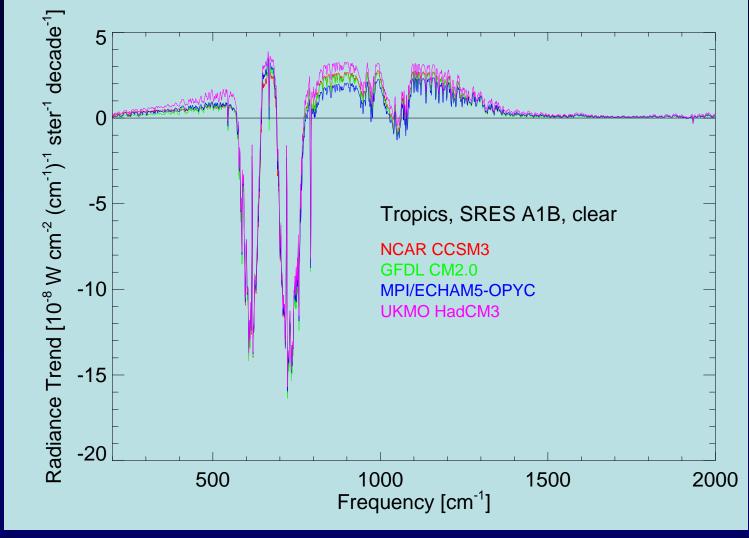
CLARREO: Feedbacks and Sensitivity

Thermal Infrared Spectra

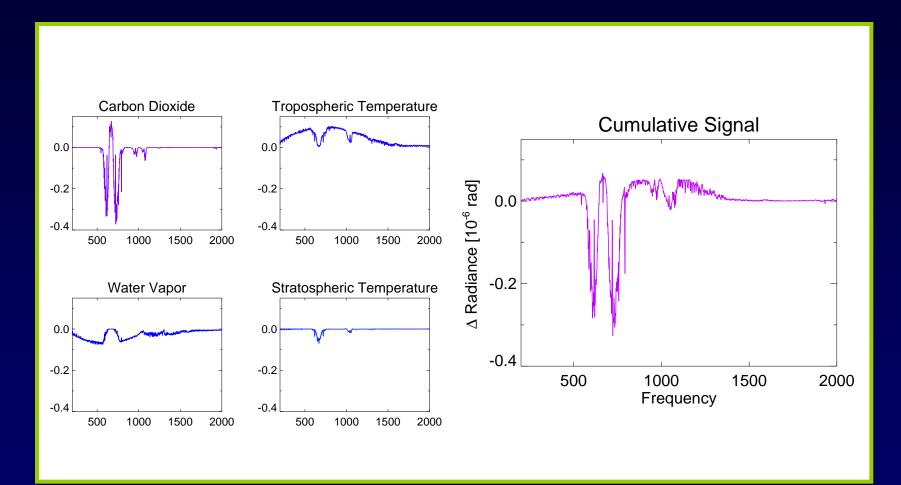


21 October 2008

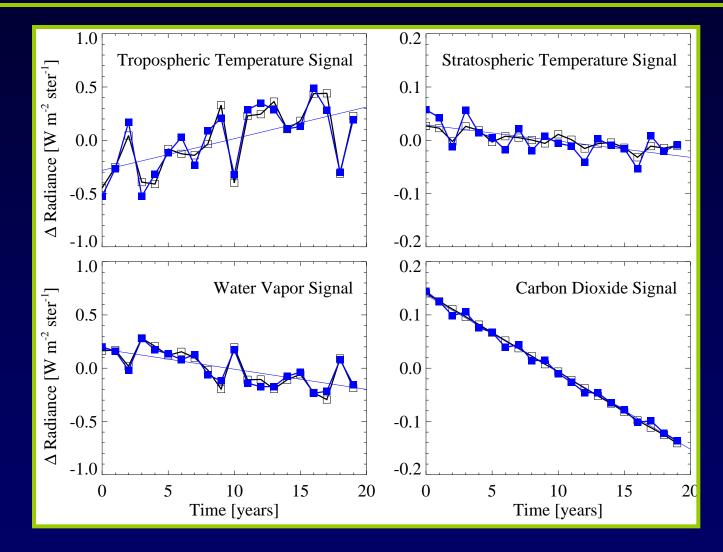
Thermal Infrared Spectra (2)



21 October 2008



Applied Scalar Prediction



21 October 2008

Summary

- Trends in GPS radio occultation data bear strongly on global average surface air temperature.
- Trends in the outgoing longwave spectrum can be used to monitor longwave forcing and constrain all longwave feedbacks observationally. Optimization in space necessary to reduce detection times.
- Work in progress includes simulations in cloudy skies and shortwave trends.

Backup Slides

Find signal amplitudes (\boldsymbol{a}_m) and uncertainty ($\boldsymbol{\Sigma}_a$) in a data set (\boldsymbol{d}) according to the signals' patterns (\boldsymbol{s}_i) against a background of natural variability, the eigenvectors and eigenvalues of which are \boldsymbol{e}_{μ} and λ_{μ} .

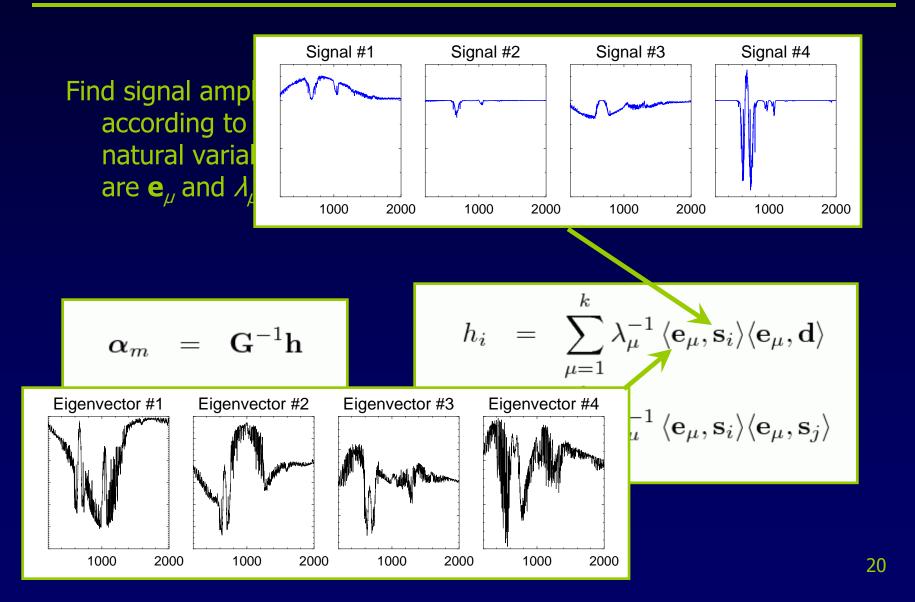
$$oldsymbol{lpha}_m \;=\; \mathbf{G}^{-1}\mathbf{h}$$

 $oldsymbol{\Sigma}_lpha \;=\; \mathbf{G}^{-1}$

$$h_{i} = \sum_{\mu=1}^{k} \lambda_{\mu}^{-1} \langle \mathbf{e}_{\mu}, \mathbf{s}_{i} \rangle \langle \mathbf{e}_{\mu}, \mathbf{d} \rangle$$
$$G_{i,j} = \sum_{\mu=1}^{k} \lambda_{\mu}^{-1} \langle \mathbf{e}_{\mu}, \mathbf{s}_{i} \rangle \langle \mathbf{e}_{\mu}, \mathbf{s}_{j} \rangle$$

21 October 2008

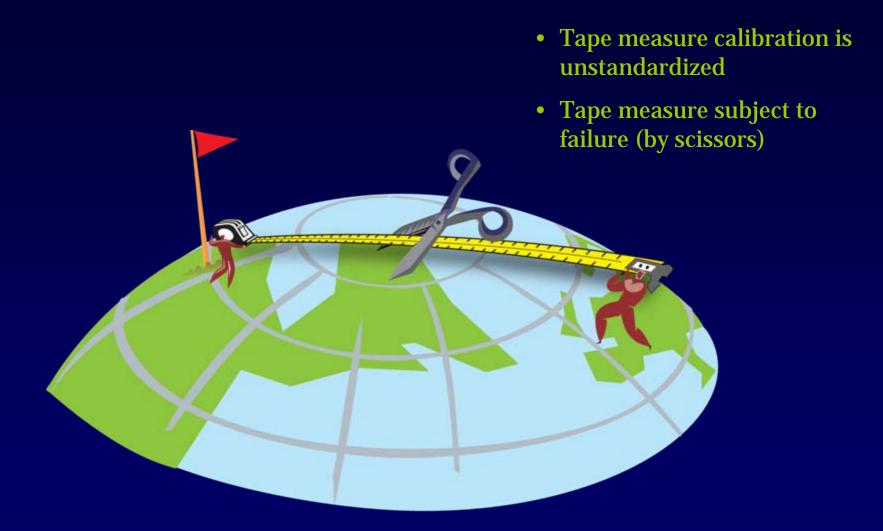
Applied Scalar Prediction



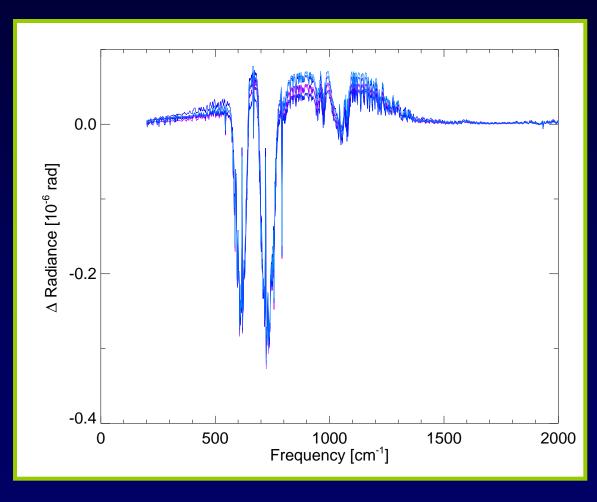
The Climate Benchmark

21 October 2008

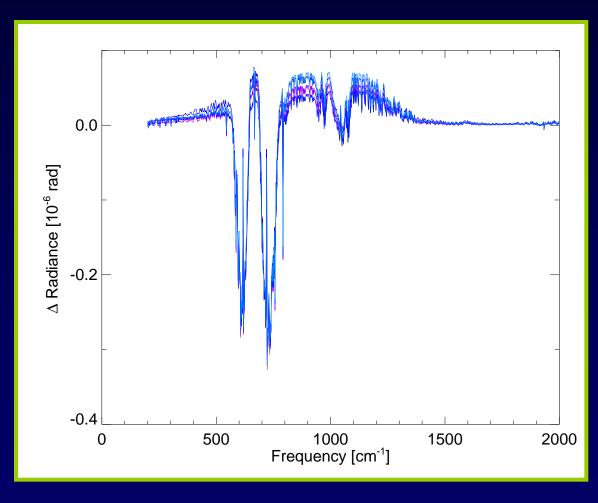
How Not to Monitor Climate...



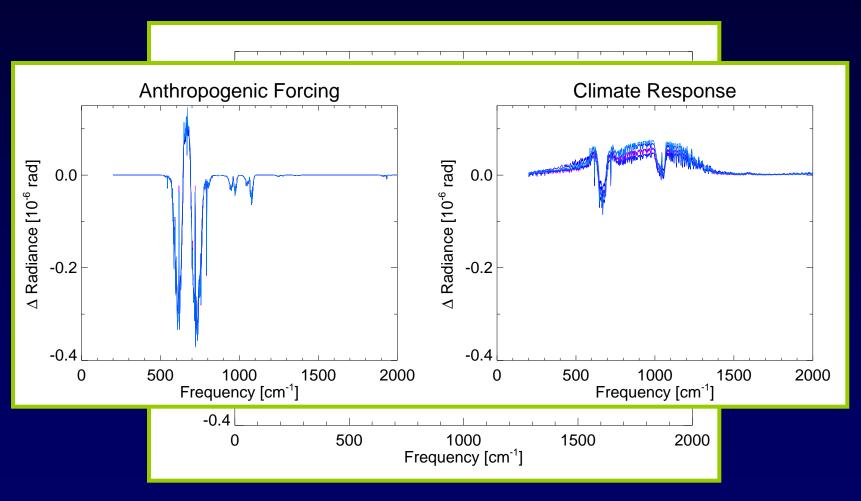
21 October 2008



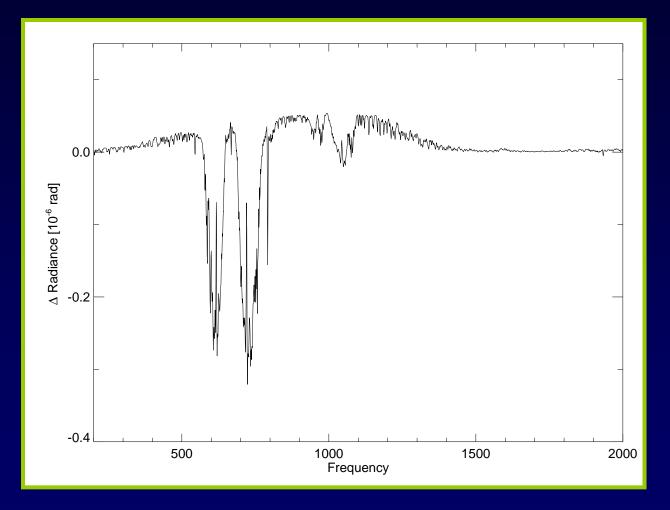
21 October 2008



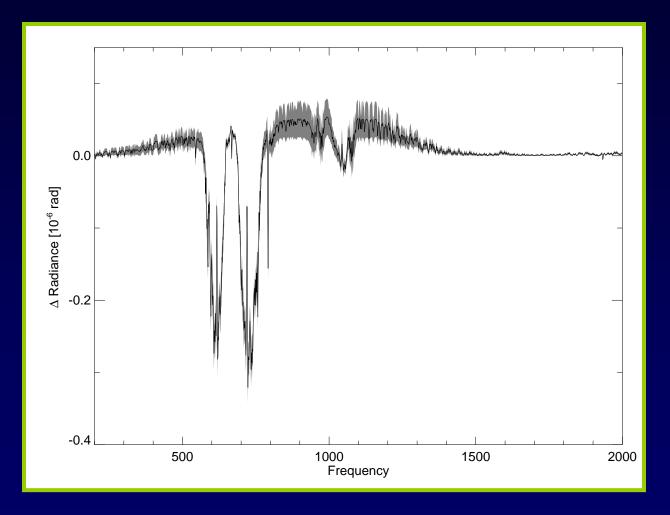
21 October 2008



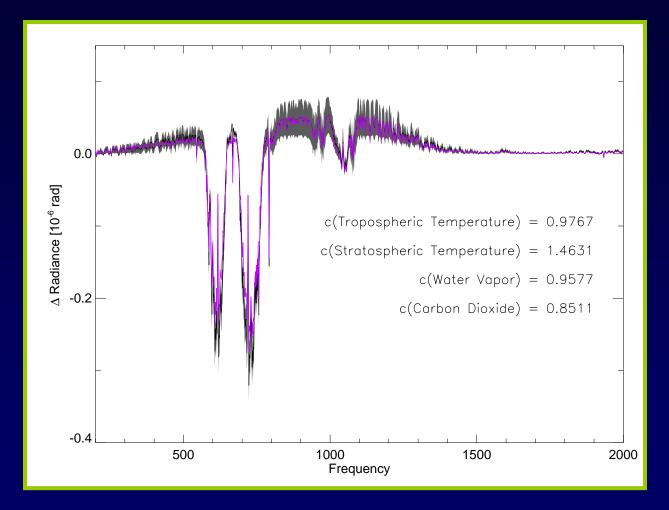
21 October 2008



21 October 2008



21 October 2008

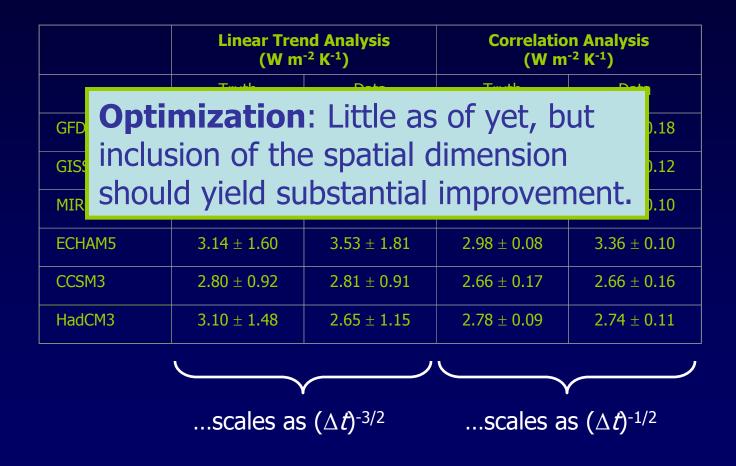


21 October 2008

Water Vapor-Longwave Feedback Precision After 20 Years

	Linear Trend Analysis (W m ⁻² K ⁻¹)		Correlation Analysis (W m ⁻² K ⁻¹)	
	Truth	Data	Truth	Data
GFDL CM2.0	3.30 ± 1.85	3.20 ± 1.85	2.75 ± 0.20	2.53 ± 0.18
GISS E-H	2.63 ± 0.81	2.95 ± 0.62	2.61 ± 0.10	2.94 ± 0.12
MIROC3.2	2.81 ± 0.85	2.53 ± 0.62	2.68 ± 0.13	2.49 ± 0.10
ECHAM5	3.14 ± 1.60	3.53 ± 1.81	2.98 ± 0.08	3.36 ± 0.10
CCSM3	2.80 ± 0.92	2.81 ± 0.91	2.66 ± 0.17	2.66 ± 0.16
HadCM3	3.10 ± 1.48	2.65 ± 1.15	2.78 ± 0.09	2.74 ± 0.11

Water Vapor-Longwave Feedback Precision After 20 Years



Accuracy Requirements, Detection Times

- With observations traceable to international standards, one evaluates the uncertainty (accuracy) of individual measurements in a timeseries.
- Any timeseries of climate data includes both natural variability with standard deviation σ_{v} timescale τ_{v} and measurement uncertainty $(\sigma_m \text{ and } \tau_m)$.

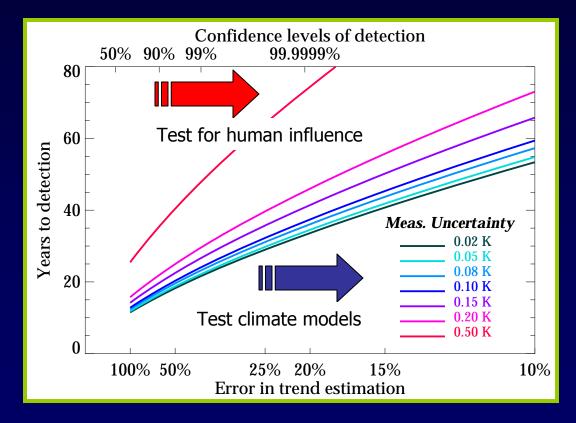
With a timeseries of length Δt , the uncertainty in the determination of the slope determination is

$$\delta m^2 = 12 \left(\Delta t\right)^{-3} \left(\sigma_v^2 \tau_v + \sigma_m^2 \tau_m\right)$$

Leroy, S.S., J.G. Anderson, and G. Ohring, 2008: Climate signal detection times and constraints on climate benchmark accuracy requirements. *J. Climate*, **21**, 841-846.

Measurement Uncertainty & Detection Times

Leroy, S.S., J.G. Anderson, and G. Ohring, 2008: Climate signal detection times and constraints on climate benchmark accuracy requirements. *J. Climate*, **21**, 841-846.



Global temperature at 500 hPa

Three satellites, 6-year lifetime.

Natural variability: 0.18 K, 1.54 year correlation time (UKMO HadCM3), Trend: \sim 0.2 K decade⁻¹.

Optimization has the effect of lowering the entire family of curves.

Discussion: Next Steps

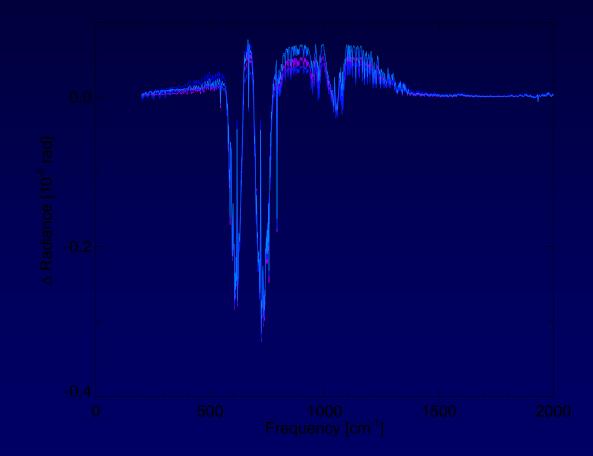
• All-sky conditions

- Explore potential for optimization: expand into spatial dimension
- Cloud Feedback Model Intercomparison Project
- Potentially GISS E-R in perturbed physics ensemble
- Fast forward model for radiance (AER's OSS)
- Anticipated results
 - Information content in far infrared (100-300 cm⁻¹)
 - Information content as a function of spectral resolution
 - Information content in joint GPS RO Spectral IR data vector
 - Accuracy requirements

• Shortwave OSSE

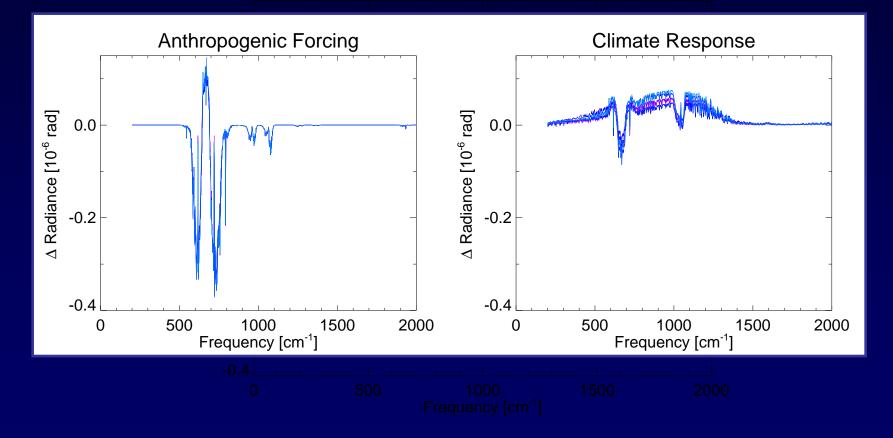
- Separating response (clouds) from forcing (aerosol)
- Exploring necessary dimensionality: observation \rightarrow SW \uparrow
- Accuracy requirements
- 21 October 2008 CLARREO: Feedbacks and Sensitivity

Model-predicted Trends in the IR

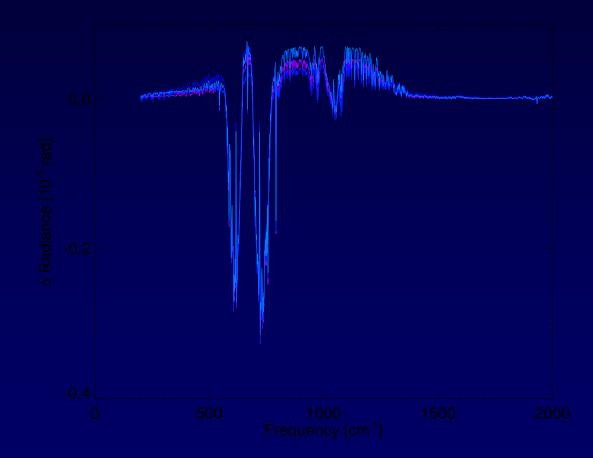


21 October 2008

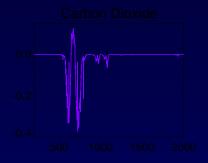
Model-predicted Trends in the IR

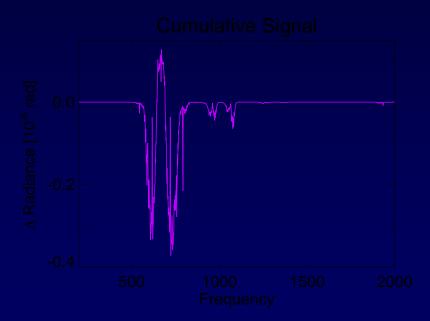


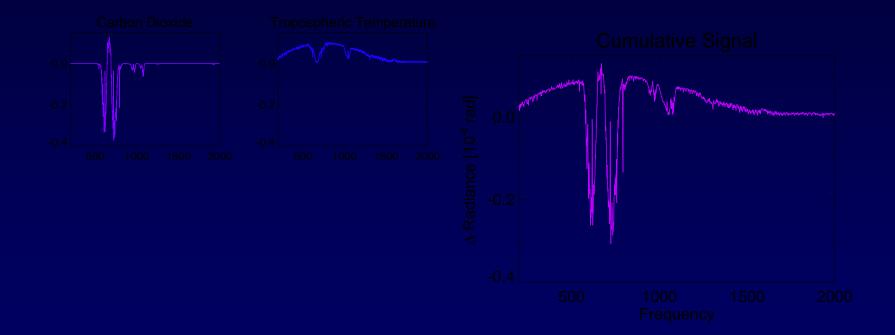
21 October 2008

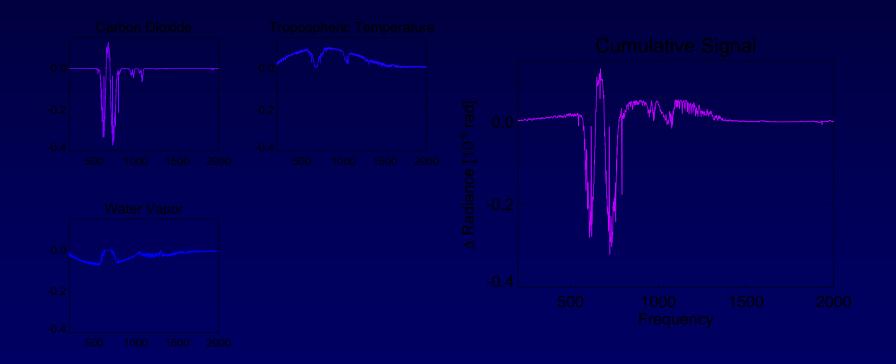


21 October 2008

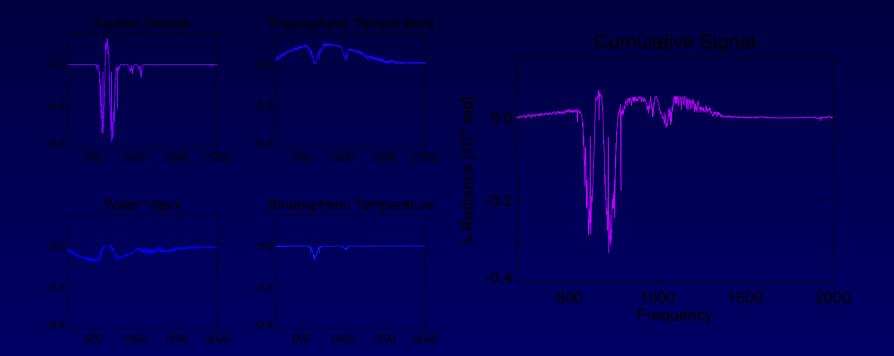






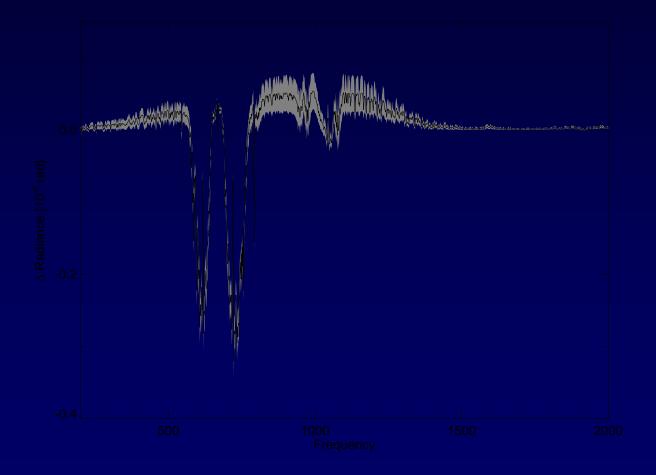


21 October 2008

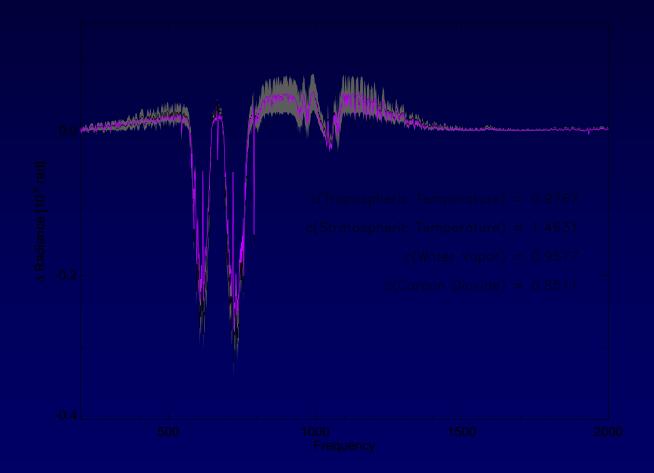


21 October 2008

21 October 2008



21 October 2008



21 October 2008

... which is Optimal Fingerprinting

Find signal amplitudes (\boldsymbol{a}_m) and uncertainty ($\boldsymbol{\Sigma}_a$) in a data set (\boldsymbol{d}) according to the signals' patterns (\boldsymbol{s}_i) against a background of natural variability, the eigenvectors and eigenvalues of which are \boldsymbol{e}_{μ} and λ_{μ} .

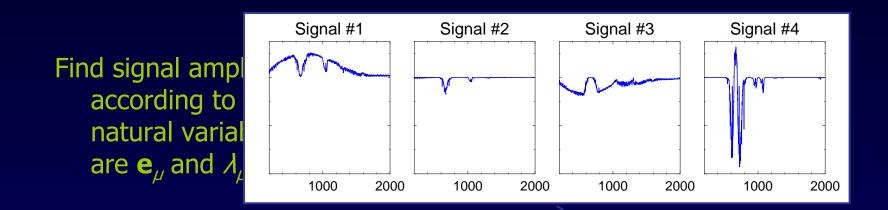
$$oldsymbol{lpha}_m ~=~ \mathbf{G}^{-1}\mathbf{h}$$

 $oldsymbol{\Sigma}_lpha ~=~ \mathbf{G}^{-1}$

$$h_{i} = \sum_{\mu=1}^{k} \lambda_{\mu}^{-1} \langle \mathbf{e}_{\mu}, \mathbf{s}_{i} \rangle \langle \mathbf{e}_{\mu}, \mathbf{d} \rangle$$
$$G_{i,j} = \sum_{\mu=1}^{k} \lambda_{\mu}^{-1} \langle \mathbf{e}_{\mu}, \mathbf{s}_{i} \rangle \langle \mathbf{e}_{\mu}, \mathbf{s}_{j} \rangle$$

21 October 2008

... which is Optimal Fingerprinting



45