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1. Introduction 

The Geostationary Operational Environmental Satellite R-series (GOES-R) program [1] is a 
collaborative development and acquisition effort between the National Oceanic and Atmospheric 
Administration (NOAA) and the National Aeronautics and Space Administration (NASA).  There are 
many signals of interest transmitted on the GOES satellite constellation [2]. This document focuses 
on two signals in particular, the Emergency Managers Weather Information Network Signal 
(EMWIN) [3][4], and the Low Rate Information Transmission, or LRIT [and its follow-on in the 
GOES-R era,  High Rate Information Transmission (HRIT)] [5][6].   

In the current GOES I-M era, EMWIN-I (FSK modulated) and LRIT are being transmitted over the 
GOES-11 (West) and GOES-12 (East) satellites (Table 1). In the GOES N-O-P era, the EMWIN-N 
signal will be transmitted on GOES-13 through GOES-15.  The EMWIN-I and LRIT signals have 
their own carriers but share transponders, while the EMWIN-N and LRIT signals have their own 
transponders.  There are commercially available EMWIN receivers currently available [7].   

In the GOES-R era, the EMWIN and LRIT information bit-stream will be combined before signal 
modulation and transmission.  The new LRIT signal, with embedded EMWIN, will have a 
transmission baud rate of 927 kilo symbols-per-second (ksps).  Because the new combined signal will 
be at a higher rate, its name will be changed from LRIT (from the GOES N/O/P era) to HRIT1 in the 
GOES-R era.   

Table 1. Signals of Interest from NOAA’s GOES Satellites 

Spacecraft 
Launch 

Year Signal Modulation 
Throughput 

[sps] 
GOES-I (8) 1994 WEFAX FSK 9600  
GOES-J (9) 1995 WEFAX FSK 9600  

GOES-K (10) 1997 EMWIN-N OQPSK2 17,970  
GOES-L (11) 2000 EMWIN-I / LRIT FSK / BPSK 9600 /293,000  
GOES-M (12) 2001 EMWIN-I / LRIT FSK / BPSK 9600 /293,000  
GOES-N (13) 2006 EMWIN-N / LRIT OQPSK / BPSK 17,970 / 

293,000  
GOES-O (14) 2009 EMWIN-N / LRIT OQPSK / BPSK 17,970 / 

293,000  
GOES-P (15) 2010 EMWIN-N / LRIT OQPSK / BPSK 17,970 / 

293,000  
GOES-Q (16) Cancelled 
GOES-R (17) 2014 HRIT BPSK 927,000 

 
The current EMWIN and LRIT receivers will not be able to receive the transmission off of GOES-R 
when the signal goes active, thus motivating the design of a low-cost EMWIN/HRIT prototype 
receiver that maintains the spirit of the EMWIN service of maximum accessibility.  The prototype 
receiver can be used now to receive the current EMWIN and LRIT signal, and will be capable of 
receiving the GOES-R HRIT transmission without any changes to the major components of the 
system, making it an ideal solution to ease the transition.  The prototype is not intended to be 
commercially available, but rather lay the groundwork for a commercial product lines.   

This document is primarily intended for developers and covers system, hardware, and software design 
considerations.  It is important to note how this document is organized before reading further.  

                                                 
1 The name HRIT implicitly refers to both the HRIT and EMWIN data-streams. 
2 The GOES-K satellite was updated to transmit the EMWIN-N (OQPSK) signal. 
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Section 2 presents an overview of the product description. The main hardware and software blocks 
are introduced. In Section 3, a detailed explanation of the hardware component of the proposed 
solution is presented. Similar analysis is done for the software components in Section 4. Performance 
results for the integrated receiver are presented in Section 5. Software and hardware appendices with 
detailed information for future developers appear in Sections 6 and 7. Conclusions are presented in 
Section 8. 
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2. EMWIN/HRIT Prototype Solution Description 

2.1 System Overview 

The EMWIN/HRIT prototype receiver is a software-based radio that is designed around an open 
source framework called GNURadio [8][9].  (An EMWIN-I and EMWIN-N solution designed by 
Avtec is also a software based radio [10].)  Most of the receiver is implemented in software running 
on a Windows-based PC. However, there is some additional hardware required for the system to 
work. Figure 1 shows an example of the complete solution.  Every system requires a powered satellite 
dish that is at least 1 meter.  Such dishes are commercially available for as low as $500 [11]. All 
EMWIN-I/N users that currently have a dish will not be required to purchase a new one to receive 
HRIT.  The dish is followed by a Low Noise Block (LNB) Down-converter that amplifies the signal 
and down-converts from L-band (~1690 MHz) to an IF frequency around 140 MHz. The Gain over 
Temperature (G/T) Figure of Merit (FOM) of the combined dish and LNB/LNA3 must be at least -
0.3 dB/K.   

The bandwidth of EMWIN-I/N is a narrowband signal that allows existing commercial receivers to 
utilize a PC’s sound-card to digitize the data and send it to the computer for further demodulation. 
The new HRIT signal’s bandwidth is too wide for any typical PC component to digitize the signal. 
New hardware is therefore required with the sole purpose of digitizing the analog signal and 
streaming the data to the computer for further processing.   

Currently, there exists a commercially available device called the Universal Software Radio 
Peripheral (USRP) designed by Ettus Research LLC that is capable of digitizing the HRIT signal 
[12][13].  The hardware digitizer designed for the prototype receiver is similar in nature to the USRP 
design, however unlike the USRP, the prototype hardware was not developed for direct commercial 
use.  This device is referred to as the Aerospace Intermediate frequency Digitizer (AID).    

Although not shown in Figure 1, ground systems require that the satellite dish be powered. The AID 
as designed for this prototype solution does not supply power to the satellite dish, therefore an 
alternate means of powering the dish is required. The LNB devices used by some ground systems 
may be unable to supply power to drive the AID board.  An inline amplifier will be required in these 
situations.     

2.2 Hardware Overview 

The AID is a mixed signal hardware board with components that are typical of any 
communication system.  The general characteristics of the board are summarized in Table 2.  
The input signal power must be between -70 and -5 dBm.  The hardware can process signals 
that have a baud-rate of 10 mega-symbols per second, with bandwidths as large as 20 MHz. 
However, the software components of the receiver limit the achievable system throughput to 
much lower values. The current board design is meant to handle downconverted-signals 
between 130 and 150 MHz.  The cost of printing the board and purchasing all of the 
components is under US $100.  A summary of the major components is shown in Table 3.   

                                                 
3 LNA stands for Low-Noise Amplifier 
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Figure 1. EMWIN/HRIT system diagram. 

Table 2. AID Specifications 

Part Cost Approximately $100   
Sensitivity -70 dBm to -5 dBm   
IF Range 130-150 MHz   
Power 1.5 Watts, USB Powered 
Maximum Signal Bandwidth Up to 20 MHz   
Maximum Signal Baud Rate Up to 10 Msps 

 
Table 3. AID List of Major Components 

Anti-Aliasing Filter 20 MHz Bandwidth, fc=140 MHz, 
Insertion loss 11 dB 

AGC Maximum Output (13 dBm)   
ADC ( Analog to Digital Conv.) 64 Mega-samples /second 
FPGA 5980 Logic Elements   
USB Controller 24 MHz Input Clock   
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2.2.1 AID Front End 

The front-end analog portion of the AID performs filtering and amplification, while the digital portion 
samples the analog waveform, down converts it from IF to baseband, and finally streams the digital 
samples to the computer via the USB controller.  The data is sampled with the Analog-to-Digital 
Converter (ADC) while the down-conversion and down-sampling of the digital samples are 
performed by a Field Programmable Gate Array (FPGA). 

The signal at the AID’s SMA4 input is assumed to have been received by a satellite dish down-
converted from RF to IF in the range of 140 ± 6 MHz.  The input signal is also assumed to be DC 
blocked.  The board was specifically designed to operate at 140 MHz to be compatible with legacy 
EMWIN solutions such as EMWIN-N and EMWIN-I.   

To suppress out-of-band thermal noise and non-HRIT signals, a 20-MHz wide Surface Acoustic 
Wave (SAW) filter, with a center frequency of fc = 140 MHz, was used as a first element in the 
receiver chain.  The bandwidth of the filter was chosen to be larger than the bandwidth of the signal 
to accommodate an array of different weather satellite signals.  Typically, the large insertion loss 
(11 dB) introduced by the SAW filter would affect the overall power; however, the board was 
designed to receive a signal that has already been boosted.  The only amplification capability on the 
board is the Automatic Gain Controller (AGC) that is driven by the output of the SAW filter.  The 
output of the AGC goes to the ADC for conversion. 

The ADC used in the design has 12-bit resolution and is sampled at 64 MHz5. Because the sampling 
frequency of the ADC is less than twice the bandwidth of the IF-signal, the hardware is performing 
IF-sampling (sub-sampling) instead of direct sampling.  The principles of IF-sampling will be 
detailed further in Section 3.1.3.1.   

Although the FPGA and ADC are efficient enough to down-convert a communication signal with 
very high baud rates, the USB device presents a communication bottleneck of 256 Mega bits per 
second (Mbps) for transferring output bits to a PC.  This bottleneck restricts the maximum input 
signal baud rate to just over 10 Mega-symbols per second (Msps).  Since the HRIT will have a 
symbol rate of less than 1 Msps, the USB interface provides sufficient throughput for this application.   

2.2.2 AID Power Meter 

The AID has an LED power meter that indicates the power of the input signal as shown in Figure 2.  
The LED is driven by the output of the AGC.  Below is a photo of the AID board, with enclosure and 
LED power meter.  The power meter is intended to provide a visual aid for users while aligning the 
satellite dish to maximize signal strength. 

                                                 
4 SMA is a SubMinature version A connector 
5 The original design of the AID box had an ADC running at 48 MHz. 
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Figure 2. LED example. 

2.2.3 Power Consumption 

The AID can be powered completely by the USB port, requiring no additional AC power sources.  
The board takes in 5 Volts from USB port and uses 270mA, thus consuming under 1.5 Watts of 
power. 

2.3 Software Overview 

The EMWIN/HRIT software radio continuously grabs data off of the USB port and demodulates it in 
real time.  As stated earlier, most of the signal processing is done in software, maximizing flexibility 
and minimizing the amount of additional hardware necessary to process the desired signals.  A 
simplified block diagram of the software is shown in the bottom portion of Figure 3.  Although not 
shown, the first operation by the software is to acquire the carrier frequency.  The operation only 
happens occasionally, thus the first persistent processing block of the software radio is a filter to 
isolate the exact signal of interest and reject all other signals.  After that, the software performs the 
core functions of digital demodulation: phase tracking, matched filtering, and timing tracking.  In the 
case of EMWIN-N, LRIT, and HRIT, the tracked digital data is sent to a Viterbi decoder for 
decoding.  After that, the data has finally been converted from an IF analog signal, at the output of the 
LNB, into binary data.  From there, additional processing, like Reed-Solomon (RS) decoding, is done 
to convert the bit-stream into text and images to be viewed using a visualization graphical user 
interface (GUI).   

Table 4 summarizes the EMWIN/HRIT software.  The software requires a computer system equipped 
with a dual-core Intel Processor with Streaming SIMD Extensions version 3 (SSE3)6 and 
approximately 1 GB of RAM.  The computer also needs at least one free USB 2.0 port.  The software 
was built around multiple libraries including: GNU Radio 3.1.2, the FFTW library “Fastest Fourier 
Transform in the West”, Intel Performance Primitives, and USB libraries.  These libraries are of 
interest to designers, but are completely irrelevant to the end-user.  The software currently achieves a 
maximum speed of over 1.5 Msps, resulting in plenty of computer processing margin.  

                                                 
6 In 2009, all dual-core Intel processors had SSE3 extensions.  
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Figure 3. Detailed EMWIN/HRIT system diagram. 
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Table 4. Software Specifications 

Operating System Windows XP    
Interface USB 2.0    
Max Throughput (as of today ) 1.5 Msps   
EMWIN/HRIT Requirements Intel Dual Core Processor. 1GB 

RAM 
Software Libraries Used 
 

GNU Radio 3.1.2, FFTW, Win-
libUSB32, Intel Performance 
Primitives 
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3. Hardware Description and Performance 

3.1 Hardware Design 

Section 2.2 provided a brief overview of the AID hardware board.  This section will go into much 
greater detail about the hardware board.  For a detailed description of how the hardware interfaces 
with the software, and a detailed look at the schematics, please see Section Appendix B.   

For convenience, the AID diagram is shown in Figure 4, where three distinct circuits are highlighted: 
clock, signal, and power.   

 

Figure 4. AID diagram. 

3.1.1 AID: Power Circuit 

The AGC, ADC, and FPGA all operate at 3.3 V, while the USB device runs at 5V.  A Low-dropout 
regulator (LDO) is used to produce two voltage levels across the board.    

3.1.2 AID: Clocking Circuit 

A 64 MHz crystal is currently used to drive the FPGA and the ADC, while a 24 MHz crystal is used 
to drive the USB controller.   

3.1.3 AID: Signal Circuit 

The signal line starts at the SMA connector input and ends at the USB output connector.  The signal 
path represents a typical flow for A/D sampling. The following subsections will analyze in detail the 
methods used for digitizing and processing the received signals. 

3.1.3.1 AID: IF Sub-sampling  

The new HRIT signal will have a baud rate of less than 1 Msps, resulting in a Nyquist sampling rate 
of 2 Mega-samples/second (Msamps/s).  If the signal was sampled at baseband, we would only need 
an ADC operating at above 2 MHz.  As shown in Figure 4, the AID samples directly at IF 
(~140 MHz), instead of shifting the signal down to baseband first.  This form of sampling is referred 
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to direct IF-sampling, or sub-sampling, since the ADC sampling frequency is less than twice the 
highest frequency (280 MHz). 

The bandwidth of interest spans from 134 to 146 MHz, which results in a Nyquist rate of 
24 Msamps/s  The reason the bandwidth of interest is so large is because signals of interest for 
GOES-R users might be at several distinct IF frequencies across the frequency span.  The input 
bandwidth is restricted by the SAW bandpass filter (BPF).  The exact frequency response of the filter 
is shown in Figure 5. 

 

Figure 5. SAW filter frequency response. 

Sub-sampling uses the general principle of sampling theory [14].  Figure 6 shows a block diagram of 
the signal processing done by the AID board. The first block is the SAW BPF, followed by signal 
processing blocks implemented by the FPGA, which include: the mixer, the decimator, and the low-
pass filter. The AGC has no implicit role in sub-sampling and is thus omitted from the figure. 

 

Figure 6. IF-Sampling block diagram. 

There are two signals of interest shown in Figure 6, the output of the BPF and the output of the ADC.  
To illustrate the theory behind IF-sampling, the following example illustrates how sub-sampling 
works for two signals in our band of interest. 
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Example: Sub-sampling 
Let the input signal be a real waveform with a bandwidth of 400 kHz and a center frequency of 137.5 
MHz (these are actually similar characteristics to the LRIT signal).  Figure 7 shows the spectrum of 
Signal-1.  The full spectral representation shows spectral content at ±137.5 MHz. The positive 
spectral image is colored red, while the negative content is colored gray. The SAW-filter filters this 
spectrum such that the bandwidth of the signal being sampled does not exceed 20 MHz. In this 
example, the signal is much less than 20 MHz so the input and output of the BPF are equivalent. 

The spectrum of the sampled waveform, Signal-2, is shown in Figure 8.  This spectrum follows the 
standard laws of sampling.  Copies of the “negative” and “positive” peaks are spaced every 64 MHz, 
which is the assumed sampling frequency.  The negative copies of the spectrum have aliases at {…, -
137.5, -73.5, -9.5, 54.5, 118.5, 182.5, …} MHz, while the positive copies fall at {…, 137.5, 73.5, 9.5, 
-54.5, -118.5, -182.5,…} MHz.  The figure shows that the negative and positive images are separated 
by 19 MHz, thus there is no aliasing between the negative and positive images, despite the fact that 
the signal was not sampled at the direct Nyquist rate of 280 MHz.   

As illustrated in Figure 8, the closest signals to baseband are images centered around 9.5 MHz.  The 
mixer, shown in Figure 6, with frequency Fc = 9.5 MHz, brings the images down to baseband.  If the 
IF frequency of interest, f, is between 136 and 144 MHz, the mixer frequency needs to be set to Fc = f 
– 2*64 MHz, to bring the IF signal to baseband. 

 

Figure 7. IF Sampling Signal 1. 

 

Figure 8. IF Sampling Signal 2. 
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3.1.3.2 Choosing the Sampling Frequency for the AID 

The USB controller has the capability of producing a 48 MHz clock output by multiplying a local 
24 MHz reference clock by a factor of two, and by using a phase-locked loop. When the AID box was 
originally designed, in order to minimize component costs, the same 48-MHz signal was initially used 
to control the ADC. 

The sampling approach described in the example above worked great for EMWIN/LRIT legacy 
signals, running either at 48 or 64MHz. However, the final GOES-R frequency plan, with the HRIT 
signal at 1697.4 MHz generated some aliasing problems when using a 48-MHz clock. 

On Figure 9, we show a plot of the spectrum for the GOES-R signals Global Re-Broadcast signal 
(GRB) and HRIT after converting from L-band to an IF frequency. The GRB signal is centered at 
136.5 MHz and is 12-MHz wide, while HRIT is centered around 143.9 MHz and is around 1.35-MHz 
wide.  When this signal is sampled at 48 MHz with the approach described above, the HRIT images 
will interfere with each other causing a significant degradation on the overall performance. 

 

Figure 9. Spectrum of GOES-R image using 48 MHz sampling. The HRIT signals are interfering. 
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Figure 10. Spectrum of GOES-R image using 64 MHz sampling. The HRIT signals are not interfering. 

The GOES-R signals do not interfere when driving the ADC with a 64 MHz clock.  This was done by 
simply replacing the clock that feeds the ADC on the AID board.  The current FPGA firmware design 
and software accommodates a 64 MHz clock, so no changes were needed when changing the ADC 
clock to 64 MHz.   In general, arbitrarily changing the ADC clock will require simple changes to the 
FPGA firmware design and software.    

3.1.3.3 AID: Filtering and Decimation 

In traditional digital communication systems, the only step left after sampling a signal would be to 
digitally low-pass filter (LPF) the baseband signal and send the digital data out for further processing.  
Because we are performing IF-sampling, there is one additional step to consider before sending the 
data out, and that is decimation. 

Without decimation, the output digital signal would have a rate of 64 Msamps/s and with an ADC 
resolution of 12 bits, the resultant USB output sample rate would be 576 Msamps/s.  Streaming 
576 Msamps/s over a USB interface is not possible.  Even if the USB interface could sustain that data 
rate, the software demodulator would not be able to keep up (using a typical consumer grade PC).  
The purpose of decimation is to reduce the data rate as much as possible before sending it to the PC.   

In general, let R be the symbol rate of the signal under study. Let Fs be the sampling frequency of the 
ADC, and M be the decimation rate as shown Figure 6. The number of samples per symbol is simply 
Fs/R/M.   

For the AID device, Fs is fixed at 64x106.  The symbol rate of the signal of interest is usually known, 
so the decimation rate can be chosen accordingly to achieve a desired number of samples/symbol.  A 
demodulator should have at least 2 samples/symbol to be able to correctly recover the transmitted 
signal. At the same time, processing a higher number of samples per symbol reduces the overall 
throughput, measured in symbols per second (sps). If decoding speed is not a critical issue, as a rule 
of thumb for a BPSK transmission, we set the samples/symbol to four. When trying to maximize the 
possible throughput, we set the samples/symbol to two.  

The HRIT software demodulator can work with any number of samples/symbol greater than two, but 
there is no reason to overburden the software with more samples per symbol if it won’t increase the 
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quality of the received data.  The samples/symbol must be as close to an integer value as possible in 
order for the software to work properly.   

The decimation range of the AID is any even integer between 2 and 256.  When demodulating the 
LRIT or EMWIN/HRIT signal, the software chooses a decimation rate that results in 
2 samples/symbol by default.  

The following example illustrates how decimation works.  Let the input signal be 293,883 sps. 
Without down-sampling, there would be 64x106/293,883 = 217.78 samples/symbol.  Decimating by 
108 would result in 2.01 samples per symbol, and is the default decimation rate used by the prototype 
receiver to digitize the current LRIT signal. Table 5 shows the parameters for receiving LRIT, 
EMWIN-N, and EMWIN-I.   

Table 5. EMWIN/LRIT Configuration 

 

 
Now that the principles of sub-sampling have been covered, the real FPGA implementation will be 
treated. 

3.1.3.4 Implementation of a Digital Down-Converter on an FPGA 

The FPGA digital down converter is shown in Figure 11. 

Product HRIT LRIT EM W IN EM W IN

M odulation BPSK BPSK OQPSK FSK

RF Frequency [M Hz] 1697.4 1691 1692.7 1690.725

IF Frequency [M Hz] 143.9 137.5 139.2 137.225

Data Rate ( R ) [sps] 927,000 293,883 17,970 9,600

ADC Sampling Frequency (Fs) [M Hz] 64 64 64 64

M ixer Frequency (Fc) [M Hz] 15.9 9.5 11.2 9.225

Decim. Rate (M ) / Samples.per Symb. 1 / 69.04 1 / 217.77 1 / 3561.5 1 / 6666.6

16 / 4.3 54 / 4.03 88 / 40.47 74 / 90.09

22 / 3.13 72 / 3.02 178 / 20 98 / 68.02

34 / 2.04 108 / 2.01 222 / 16 136 / 49.01
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Figure 11. FPGA digital down-converter implementation. 

Recall that the mixer, down-sampling and low-pass filtering are all implemented on the FPGA chip 
on the AID. The user can control the mixer frequency, cf , and the decimation rate M.  The low pass 
filter coefficients are automatically computed given the user choice of M, such that the cutoff 
frequency is (64x106/M/2). 

The mixer is implemented via the CORDIC algorithm which multiplies incoming IF waveforms by a 
complex valued exponential [15].  Decimation, which includes down-sampling (dropping samples) 
and filtering, are done together in practical digital systems.  One of the more efficient low-pass and 
down-sampling filtering algorithms is the Cascaded Integrator Comb (CIC) filter [16] which is 
implemented on the AID board.  Lastly, there is a First-Input-First-Output (FIFO) buffer between the 
USB controller and FPGA to manage the data transfer.  The FIFO depth is not programmable by the 
user.  

The FGPA code was designed to operate in multichannel mode with two transmit and two receive 
channels.  The AID only needed to operate one receive channel.  This allowed us to implement a 
single channel version of the original FGPA code.  Our single channel design is much smaller, and 
fits on an FPGA that is cheaper and consumes less power than the original FPGA.  The FPGA used is 
a Cyclone EP1C6, which contains 5980 logical elements.  

3.2 Hardware Performance  

There are number of factors that influence the performance of the device, e.g., the sampling frequency 
of the ADC, the noise figure of the system, the noise introduced into the system due to clock jitter, the 
anti-aliasing filter, and other aspects. The best measure of board performance is the overall noise 
figure.  The noise figure of the AID was estimated to be around 18 dB.  The single best way to 
improve performance would be to get a better clock to drive the FPGA and ADC, however, the clock 
that was chosen was adequate to meet system specifications.  
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In order to characterize the performance of our IF-sampler, we measured the amount of folded noise 
in the band of interest that occurred as a result of sampling.  To conduct this experiment, a live signal 
from GOES-12 was used.  Figure 12 illustrates a plot of the captured signal.  The blue line shows the 
frequency response of the LNB, which has a bandwidth of 50 MHz, while the green line shows the 
frequency response of the signal after being filtered with a SAW filter.  The performance degradation 
due to folding was minimal.  

 

Figure 12. Spectrum of live GOES-12 signal. 
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4. Software Description 

In this section, we describe the signal processing blocks designed to demodulate LRIT, EMWIN-I, 
and EMWIN-N.  Throughout this section, we will reference the different file names of the source 
code used to implement the different processing blocks.  For example, when a finite impulse response 
(FIR) filter-block is shown, it will referred to as gr_fir_filter, because that block is implemented using 
the file gr_fir_filter.cpp. 

We begin this section by describing the general software framework used to design the 
EMWIN/HRIT software receiver in Section 4.1. We then describe in Section 4.2, a carrier acquisition 
algorithm that is performed before demodulating any communication signal  After that we investigate 
the LRIT transmission specification and the LRIT software receiver architecture in Sections 4.3 and 
4.4, respectively.  The EMWIN-N and EMWIN-I are likewise treated in the subsequent sections.  A 
brief description of the Soft-decision Viterbi decoder appears in Section 4.7. 

4.1 Software Framework 

As stated earlier, the software was developed with a free open source software development suite 
called GNU Radio [8].  The GNU Radio framework provides an environment that allows a simple 
interconnection of different C-written subroutines. The GNU Radio paradigm allows different 
programmers to write custom digital-communication blocks that can be easily configured and 
connected using basic C++ syntax.  Once all the blocks are configured and connected, GNU Radio 
automatically streams data from beginning to end without the need for explicit user control.   The 
user-controlled initial state of the software blocks can be found on Table 6. 

The environment of connecting the blocks and streaming data in GNU Radio is resource-efficient, 
making GNU Radio a good framework for designing real-world radio applications.  The main 
bottlenecks in GNU Radio come from the implementation of the actual communication blocks, for 
example, filtering, error correcting decoding, etc.  In order to take advantage of the powerful GNU 
Radio framework but also produce an application with high performance, it is best for users to write 
their own communication blocks, or simply optimize the blocks that already exist in the GNU Radio 
library.  In order to develop the EMWIN/HRIT solution, several GNU Radio-blocks were optimized 
and many new blocks were created in order to build a system that works according to the 
specifications.   In many cases, blocks were written using the Intel® Performance Suite 5.1 [17]. This 
library allows many mathematical operations to be performed in parallel, using specific low-level 
Intel-processor instructions.  Vector multiplications and matrix operations can be efficiently pipelined 
in order to increase the overall system throughput. The system diagram in Figure 13 shows the logic 
behind the software radio components of the EMWIN/HRIT solution. Each of the software-blocks 
that are part of this solution are described in the following sections. 
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Figure 13. Overall EMWIN/HRIT system block diagram. 
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Table 6. AID User-Defined Input Parameters 

Parameter 

Comm
and 
Flag Default Value Description 

Enable File Sink -wr 0 
Write raw USB samples directly to disk. 
Output file will be located in 
c:\temp\usrp_log\  

Decimation Rate -dr 
Depends on 
Signal range:  

[2-256] 

Sets the decimation rate on the FPGA. 
See Table 5 

Center IF-Frequency -fc 
 

For the LRIT Signal, default values is 
137.5 MHZ, for EMWIN-I, 137.225 MHz, 
and for EMWIN-N is 137.9 MHz. 
143.9 MHz for HRIT 

Enable Software Filter -lfilter 1  Enable software rejection filter 

Repeat Incoming 
Waveform 

-repeat 0 

If the radio is run using a recorded user-
file, this flag enables the receiver to repeat 
the incoming waveform once it reaches 
the end of file This is a useful feature for 
bit error rate testing 

Roll off Factor -roll 
0.5 

Range: [.1 - .9] 
Roll-off factor for square root-raised cosine 
pulse shaping 

Bit Rate -br 
Depends on 

Signal 
293,883 for LRIT, 17970 for EMWIN-N, 
9600 for EMWIN-I, 927,000 for HRIT. 

Buffer Size -buff 64 [kbytes] 
For multi-threaded applications, this 
parameter defines the size of the buffer 
between threads 

Use Recorded Data? -rec 0 

Allows software radio to run reading a pre-
recorded file stored on a network drive 
instead of using data from the USB port of 
the AID box. 

Timing Bandwidth -tbw 
3000[LRIT] 

1000[EMWIN-N] 

Indicates the factor that divides the symbol 
rate of the desired signal to determine the 
timing-loop bandwidth for LRIT or HRIT 
and EMWIN-N only 

Phase Bandwidth -pbw 
100[LRIT] 

200[EMWIN-N] 

Indicates the factor that divides the symbol 
rate of the desired signal to determine the 
phased-locked-loop bandwidth for LRIT or 
HRIT and EMWIN-N only 

 
4.2 Frequency Acquisition 

The purpose of the block is to estimate the center frequency of a sampled communication waveform.  
The constituent blocks of the acquisition engine are shown in Figure 14. The core of this software 
engine is based on averaging the successive Fast Fourier Transforms (FFT) of the incoming signal. 
The frequency-search window (that depends on the initial frequency uncertainty), the bin-resolution, 
and the amount of bin-averaging are all runtime programmable. The command-line frequency 
acquisition options and default values are described in Table 7.  A fourth-law detector has been 
provided to lock onto the BPSK subcarrier. For the offset quadrature phase-shift keying (OQPSK) 
case a square-power detector is used. The search window size and bin resolution values determine the 
FFT size. 
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Figure 14. Block diagram of software-based frequency acquisition. 

Table 7. Configuration for Frequency-Acquisition Subroutine 

Parameter 
Command 

Flag 
Default 
Value Description 

Enable / Disable 
Freq.Acq -acq 1 Frequency acquisition is enabled by default.  
Bin resolution -fa_res 50 Hz Frequency bin-resolution 
Freq. Range -fa_range 50 kHz Initial frequency uncertainty to search for 
Detection Rule       

Square-Law 
 

-fa_2 
 

0 or 1 
 

Depends on signal of interest and SNR. Default 
method for OQPSK. 

4th order Law -fa_4 0 or 1 Depends on signal of interest and SNR. Default 
method for BPSK. 

Absolute Power 
  

f Square and 4th Power are disabled, then this 
method is enabled. Used in some low SNR 
scenarios. Default for FSK. 

FFT Averages -fa_numfft 16 
Number of times FFT algorithm is run to measure 
the frequency content of a specific bin 

Forced Frequency 
Offset 

-foff 0 

User can set a desired frequency offset that adds 
to the value that the frequency algorithm obtains. 
Or one can turn acquisition off, and enter in a 
known offset manually.  

 
A peak-search algorithm is run once the desired number of averaged FFTs have been computed. The 
acquisition engine will return a set of bins whose integration-value determine the likelihood of the 
signal of interest having frequency contents on that particular bin. Each detected peak will therefore 
have an associated power metric. Let )(0 NP


be the length-N vector of measured power levels. The 

acquisition engine creates a vector of sorted metrics )(NPs


where, without loss of generality, we 

assume that )()1()0( NPPP sss   .  The peak-frequency is determined by computing the 
center of mass for the largest bin and the adjacent eight bins. Let )(0 MaxP  be the bin in the un-
sorted power metric vector that is mapped to the sorted metric )(NPs . The power metric can then be 
defined as: 
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The denominator can be thought of as the noise power, while the numerator is the signal power. 
Recall that when a BPSK signal of the form tj cAe   is sent through a square-law detector, the 
output is ideally an impulse function. This implies that in order to measure the signal power one 
would ideally require summing over only a single bin on the numerator. However, due to the 
imperfect size of the FFT-bins, our experiments show that considering eight adjacent bins is a better 
indicator of the true signal level. At low SNRs, squaring or quadrupling the value of a particular bin 
can have severe squaring-losses. Therefore the SNR operating point must be considered before 
choosing a specific frequency-acquisition method. 

4.3 LRIT Transmitter Specifications 

The digital LRIT is an international standard for data transmission that was developed by the 
Coordination Group for Meteorological Satellites (CGMS) in response to the recommendation for 
digital meteorological satellite broadcasts. The CGMS Global Specification provides the standard that 
is supported by all operational geostationary meteorological satellites to be flown by the United 
States, European agencies, Japan, China, and Russia. The NOAA and other world meteorological 
agencies have developed subsequent system specifications, designs, and implementations of their 
specific LRIT systems. The origin of the name LRIT is due to its initial low data rate of 293 ksps.  

The full LRIT specification can be found at [5][6].  The packetization process of LRIT data follows a 
standard developed by the Consultative Committee on Space Data Systems (CCSDS).  Below is a 
summary of steps for converting image data into an LRIT waveform.   

4.3.1 LRIT Transmission Process 

 Compress image data with Rice coding [18] 

 Add CRC (Cyclic Redundancy Check)   

 Create Virtual Channel Data Unit (VCDU) data payload out of compressed image data 

 Assemble Coded Virtual Channel Data Unit (CVCDU) packet 
o Reed Solomon encode VCDU data payload 
o Add VCDU deader 

 Assemble the Channel Access Data Unit (CADU) packet  
o Randomize CVCDU packet 
o Add synchronization header 

 Viterbi encode CADU packets continuously without termination 

 Modulate Viterbi encoded data using BPSK modulation 

For a more detailed description of the transmission process, please see the specification. [5][6].  In 
Table 8, key LRIT signal parameters are presented. 
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Table 8. Key LRIT Transmission Parameters 

Parameter Value 
Satellite Service GOES-11 (West), GOES-12 (East), GOES-13, GOES-14 
Modulation BPSK 
Center Frequency 1691 MHz 
Typical (140 MHz) IF 
Frequency 

137.5 MHz 

Measured Symbol Rate 293,883 symbols/second 
Pulse Shape Root Raised Cosine (α= 0.5) 
Forward Error Correction 
Encoder 

 Type:  Convolutional (Soft-Decision Decoder) 
 Rate:   ½ 
 Constraint Length:   7 bits 
 Generator:      
           G1 = 1111001;  G2 = 1011011 
 Symbol Inversion:   none 
 Puncturing:           none  

Synchronization Header 1ACFFC1D 
Randomizer Polynomial 87531)( xxxxxh   

Reed Solomon (255, 223) code symbol interleaving I = 4 
CRC Check Polynomial 161251)( xxxxg   

 
4.4 LRIT Software Receiver Architecture 

The steps required to process an LRIT file from the transmitted data are shown in Figure 15.  As 
stated earlier, the first step to demodulate LRIT is carrier acquisition.  After carrier acquisition, the 
signal is low-pass filtered to reject all adjacent signals.  The signal rejection filter can be turned on 
and off using the flag specified in Table 6.  After bringing the signal down to baseband and filtering 
out interference, phase tracking, matched filtering, timing recovery, and convolution decoding via the 
Viterbi algorithm are performed. The data link layer takes the output of the Viterbi decoder consisting 
of blocks of 8160 bits, with each block being preceded by a 32 bit header for synchronization. These 
8160 data bits have been randomized to assure sufficient bit transitions using the polynomial

87531)( xxxxxh  . The de-randomized bits form a Coded Virtual Channel Data Unit 
(CVCDU) as shown in Figure 15.  The first 892 octets of the 1020 octets in the CVCDU correspond 
to the header and data bits of a systematic (255,223) RS code [20].  By using a systematic code, the 
892 octets are not modified by the RS channel code. This implies that under high SNR values the 
VCDU data could be used without RS decoding. The network layer forwards the RS decoded packets 
to the transport layer that takes care of reassembling the LRIT files that were subdivided before 
transmission. The session layer is next, where the CRC field checks for packet integrity using the 
polynomial 161251)( xxxxg  .  The presentation layer will finally convert the 
decompressed LRIT files into user data files. The type of files that will be received include: image 
data files, service messages, alphanumeric files and Global Telecommunication System (GTS) 
messages.  

The BPSK signal of interest is defined by the bit rate, bf , and the subcarrier frequency, cf : 

))()(2cos(),()( 0 ttffftmtX cb  
 

where 0f  is a frequency offset introduced by the channel,   is the difference between the transmitter 
and receiver frequencies, )(t  is a phase offset and ),( bftm  is the information message to be 
recovered. A conventional BPSK demodulator circuit with separate phase and symbol tracking loops 
is used for demodulation, as shown in Figure 16. The signal at the input of the software radio has 
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already been frequency-shifted from cf  to baseband and decimated in the digitizer to reduce the 
computational requirements: 

0( ) ( , ) cos(2 ( ) ( ))bY t m t f f t t      

 

Figure 15. The LRIT and EMWIN-OQPSK packet structure. 

An optional software-decimator can be added to further reduce the bit rate. For this particular 
implementation, we only use the decimator at the digitizer and use the data rates shown in Table 5.  
An additional low-pass software filtering stage is added to the input of the radio to remove undesired 
neighbor frequency contents. 
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The LNB from the hardware interface translates the incoming frequency of the LRIT signal, from 
1691 MHz down to cf 137.5 MHz. However, due to the sub-sampling method used, the effective 
center frequency is cf 9.5 MHz, giving 6 6

max (9.5 10 )(200 10 )    1.9 kHz, assuming a 
200 ppm frequency tolerance on both the transmitter and receiver oscillator references.  Phase 
tracking by means of a Costas loop [19], can be applied to remove the dynamic frequency offset, 0f , 
introduced by the channel and the offset due to unmatched reference clocks. Following this stage, a 
filter matched to the root raised cosine pulse shape is used for maximizing the SNR in the presence of 
additive stochastic noise. A Mueller-Müller timing error detector [26] is used to recover the symbol 
timing of the signal. 

Once the timing properties of the signal have been recovered, a convolutional Viterbi decoder is used 
for error correction. Building a software Viterbi decoder that was able to handle the projected data 
rates of 900 ksps was one of the greatest challenges in this project. Since one of the ideas of GNU 
Radio is to be able to reuse signal processing blocks, we chose to build a flexible decoder that could 
handle any constraint length, rate and polynomial choice. Since the full specifications of the future 
GOES broadcast signal are not completely defined, we decided that the practical advantages of 
having a flexible decoder were better than designing a specific decoder for a particular channel code 
rate that could perhaps attain a higher throughput. Our initial design was able to maintain a 
throughput of around 300 ksps. Since this was not sufficient to handle the desi red rates, we carefully 
vectorized the algorithm using Intel IPP functions [17]. This redesign allowed us to increase our 
throughput to 1.89 Mbps when running the decoder on a dual processor Intel Xeon CPU at 3.7 GHz. 
In Figure 16, the signal flow in the receiver is shown, together with the name of GNU Radio blocks 
that are used in the implementation. Note that, for the case of the Viterbi decoder, the block has been 
labeled ar_viterbi to indicate that this block was never a member of the GNU Radio library.  The 
remaining blocks use the prefix gr, to indicate that they have been derived from the original GNU 
Radio library. This does not imply that these blocks remain unchanged from their original versions. In 
fact, all of them have been optimized using the Intel IPP libraries to enhance their throughput. The 
final signal-processing stage is a threshold slicer that generates output bits that are fed to the data link 
layer for image extraction. 
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Figure 16. Block diagram showing the different signal processing blocks in an LRIT BPSK receiver. 

Table 9. Soft Decision Viterbi Decoding Parameters 

Parameter 
Command 

Flag 
Default 
Value Description 

Minimum Threshold -vthresh 0.1 
Minimum bit error rate at the output of the 
Viterbi block, to declare that the decoder has 
solved its phase ambiguity 

Test for Cycle Slip -vperiod 10 

Indicates number of blocks before the Viterbi 
subroutine verifies that it is locked to the 
correct phase. For BPSK there are 2 
possible states only. For OQPSK there are 
four. 

 
4.5 EMWIN-N Transmission Specifications 

The full EMWIN specification can be found at [3][4].  Below is a summary of steps for converting 
EMWIN products into an EMWIN waveform.   

4.5.1 EMWIN-N Transmission Process 

 Generate gif, jpg, zip, and txt products  

 Create VCDU data payload out of EMWIN products 

 Assemble CVCDU packet 
o Reed Solomon encode VCDU data payload 
o Add VCDU header 

V
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 Assemble CADU packet 
o Randomize CVCDU packet 
o Add synchronization header 

 Viterbi encode CADU packets continuously without termination 

 Apply binary differential encoding on the Viterbi encoded data 

 Modulation data using Offset Quadrature Phase Shift Keying (O-QPSK) 

Table 10 summarizes the key EMWIN-N signal parameters. 

Table 10. EMWIN-N Key Parameters 

Parameter Value 
Satellite Services GOES-13, GOES-14 
Modulation OQPSK 
Center Frequency 1692.7 MHz 
Typical (140 MHz) IF 
Frequency 

139.2 MHz 

Measured Symbol Rate 17970 symbols/second 
Pulse Shape Root Raised Cosine (�= 0.5) 
Forward Error Correction 
Encoder 

Type:   Convolutional  (Soft-Decision Decoder) 
Rate:    ½ 
Constraint Length:  7 bits 
Generator:  
     G1 = 1111001;  G2 = 1011011 
Symbol Inversion:   none 
Puncturing:   none  

Binary Encoding Differential Encoding  
Synchronization Header 1ACFFC1D 
Randomizer Polynomial 87531)( xxxxxh   

Reed Solomon (255, 223) code symbol interleaving I = 4 

 
4.6 EMWIN-N Software Receiver Architecture 

The EMWIN software receiver described herein was developed to satisfy GOES-N broadcast 
requirements. The user data format is shown in Figure 15.   OQPSK modulation is a variant of phase-
shift keying modulation using four different values of the phase to transmit information across a 
channel [19][21].  Taking four values of the phase (two bits) at a time to construct a QPSK symbol 
can allow the phase of the signal to jump by as much as 180 at a time. When the signal is low-pass 
filtered (as is typical in a transmitter), these phase-shifts result in large amplitude fluctuations which 
has an undesirable effect in communication systems. By offsetting the timing of the odd and even bits 
by half a symbol-period, 2T , the in-phase and quadrature components will never change at the same 
time. This will limit the phase-shift to no more than 90 at a time which yields much lower amplitude 
fluctuations than non-offset QPSK.  The demodulation chain is shown in Figure 17.   

The 2T  fixed symbol timing offset is removed after the frequency/phase has been completely 
recovered by the Costas loop.  As shown in Figure 17, the phase/frequency corrected signal gets split 
into a parallel I-Q data stream.  The I-data is then delayed by 2T , and then recombined with the Q-
data to form an offset free phase tracked QPSK signal.  Because the data has been recombined, the 
timing tracking and match filtering blocks operate on complex I-Q data, instead of working on I-data 
and Q-data independently.  
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Another difference with Figure 16 is that the in-phase and quadrature signals require a de-interleaving 
block prior to their Viterbi decoding. This de-interleaving works by taking the in-phase vector 

},,,{ 210 


IIII  , and the quadrature vector },,,{ 210 


QQQQ  and combining them into a single 
vector, },,,,,{ 221100 


QIQIQIR  .  Finally, since the EMWIN-N bits are differentially encoded, a 

differential decoding stage is added before the hard-decision detection at the binary slicer.  After 
slicing, the binary data goes to the data link layer processor for header synchronization and Reed-
Solomon decoding.  

 

Figure 17. Block diagram showing the different signal processing blocks in an EMWIN OQPSK receiver. 

4.7 Soft-Decision Viterbi Decoder 

A convolutional code is a type of error-correcting code in which each an m-bit information symbol is 
encoded into an n-bit symbol, where m/n is the code rate. The transformation is a function of the last 
k information symbols, where k is the constraint length of the code. Several algorithms exist for 
decoding convolutional codes. For relatively small values of k, the Viterbi algorithm is universally 
used as it provides maximum likelihood performance and is highly parallelizable. Viterbi decoders 
are thus easy to implement in digital integrated circuits and in software. 

Low complexity high-throughput Viterbi decoders utilize hard-decisions to recover the information 
bits. However, the decoder performance suffers 3 dB loss when using hard decisions.  In order to 
recover the 3 dB performance loss while maintaining high throughput, quantized soft-decisions are 
used instead of full 32-bit precision floating point numbers.  Our soft-decision Viterbi decoder 
quantizes the 32 bit soft-decisions into 3-bit numbers (8-levels).  This quantization technique allows 
the decoder to avoid using floating point multiplications, which significantly improves speed while 
still maintaining a high coding gain. Vectorized manipulation of data using the Intel Performance 
Primitives library also contributed to increasing the overall throughput. 

The EMWIN-N, LRIT and HRIT protocols all use a rate ½ (where for each transmitted bit, an 
additional parity bit is transmitted) convolutional code whose parameters are described in both 
Table 8 and Table 10. 
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Viterbi decoding is more computationally intensive than all other processing blocks combined.  In 
order to maintain a high throughput, the Viterbi decoder had to be implemented on one thread while 
the BPSK demodulation was implemented on a second thread. By doing this, one can take advantage 
of dual core CPUs, and the total system throughput is equivalent to the throughput of the slowest 
thread alone.  Splitting the Viterbi decoder onto a separate thread is not necessary for the EMWIN-N 
signal due to its slow data rate.  

4.8 EMWIN-I Signal Specifications 

The EMWIN software receiver described in this section corresponds to a legacy FSK signal 
developed to satisfy GOES-I broadcast requirements in [22]. This data stream consists of National 
Weather Service (NWS) weather products and other data files. Each product or file, whether ASCII 
text or binary data, is divided into 1 Kbyte packets and sent as a series of asynchronous 8-bits, with 
no parity bits, one start and one stop bit:(8,N,1)[23].  The asynchronous bit-stream follows the RS-
232 standard.  This standard specifies that an 8-bit data byte is preceded by one start bit (0), and is 
ended with an idle sequence, which is represented by sequence of stop bits (1).   As an example, 
consider the representation of 3 bytes of data.   

A synchronous binary representation of 0 base 10, 255 base 10, and 170 base 10, is  

000000001111111110101010. 

An example of an asynchronous binary representation of the same three bytes is 

0000000001111110111111111010101010111. 

For easy readability, the start bits and stop bits (idle sequences) are in bold red.   

There is always one start bit before every byte, however the length of the stop bit sequence (idle 
sequence) is indeterminate.  The byte representing 0 base 10 begins with a start bit, but continues with 
an idle sequence of length 6, instead of just a single stop bit.  After that idle time, there is a start bit, 
then the byte representing 255 base 10, and then a single stop bit.  After that there is another start bit, 
the byte representing 170 base 10, and finally another idle sequence of length 3.  When parsing the 
data for text files, the asynchronous nature of the bit-stream must be accounted for.   

The EMWIN-I satellite broadcasts are transmitted as asynchronous )1,,8,9600( N . The FSK signal 
has no formal CCSDS packet structure and no error correction codes.  The signal has a rudimentary 
packet structure that has a header marker of 6 bytes of zeros.  The header follows the same 
asynchronous principles as the actual data, so there is a start bit followed by an indeterminate idle 
sequence after each byte of zeros.  Further details on the specification of this signal can be found [24].   

Sometimes EMWIN-I is described as Direct FSK or DFSK, not to be confused with differential FSK.  
The term DFSK is obsolete and the type of modulation used by EMWIN-I is simply referred to as 
FSK by today’s standards. 
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Table 11. EMWIN-I Key Parameters 

Parameter Value 
Satellite Service GOES-11 (West), GOES-11 (East) 
Modulation FSK  
Center Frequency 1690.725 MHz 
Typical (140 MHz) IF Frequency 137.225 MHz 
Measured Symbol Rate 9600 symbols/second 
Frequency Separation 3600 Hz 
FEC none  
Synchronization Header 0x000000000000 (hexadecimal) 
Randomizer Polynomial 2031)( xxxh   (V.36)  

 
4.9 EMWIN-I Software Receiver Architecture 

Frequency-shift keying (FSK) is a modulation scheme that transmits information through discrete 
frequency changes of a carrier wave [25].  A binary FSK signal can be defined by two tone 
frequencies: 0f  and 1f , corresponding to '0' and '1' bits. The demodulator is designed to support 
programmable tone frequencies.  

The tone frequencies may be rather large, while the symbol rate is typically very small. The Nyquist 
sampling [19] requirement dictates a sampling rate, sf , of at least 12 f  to prevent aliasing. System 
throughput and efficiency can be improved by translating the tones such that they are centered around 
DC. The translation is accomplished by first mixing the received signal with a tone at a frequency of 

)(21 01 fffc  .  The new tones are then given by: )(21 100 fff   and )(21 011 fff  , as 
shown in Figure 18.   

 

Figure 18. Down-converted FSK Frequency Diagram 

 
 
 



 

30 

 

Figure 19. Block diagram showing the different signal processing blocks in an EMWIN-I FSK receiver. 

The FSK demodulation block diagram is shown in Figure 19. The center frequency 
)(21 01 fffc 

 is estimated by the carrier frequency acquisition block as shown in the figure.  A 
low pass filter is applied to reject out-of-band interference after bringing the tones down to baseband.  
For simplicity, the baseband tones will be referred to as 0f  and 1f , instead of 0f  and 1f   for the 
remainder of the discussion.   

From there, the data is correlated using two locally generated tones, corresponding to 0f  and 1f . 
Both correlation output streams go through a running average block, where the averaging window 
period is the width of a symbol period.  The running average is not an integrate and dump process.  If 
there are 100 samples in there will be 100 samples out.  After the running average, the data goes 
through a magnitude block which converts the data from complex to real.  These two real-valued data 
streams then go into an acquisition and tracking engine for further processing.   

The timing acquisition and timing tracking blocks that reside inside the ar_fsk_demod block are 
described in sections 4.9.1 and 4.9.2 respectively.  The acquisition block acquires the initial time 
offset, while the symbol timing tracking block maintains timing lock.  The output of the timing 
tracking block is an estimate of the timing error, err  as shown in Figure 21.  The timing error drives 
the samplers for both the 0f  and 1f correlation output streams.  Each output of the sampler represents 
the total energy over the 0f  and 1f  bases over an entire symbol period.  If the difference of these two 
outputs is positive, then the correlation against 0f  is larger than the correlation against 1f , and thus 
the bit slicer would produce 0.   

The bit decisions are sent to a data-link layer block for further processing, which is defined in 
fsk_imageprocessor.cpp.  The first step in data processing is descrambling the asynchronous FSK 
data bits. 

The scrambler used is similar to the one in the International Telecommunication Union (ITU) V.35 
standard (currently replaced by ITU-V.36)[27]. The polynomial used for scrambling is 

2031)( xxxh   and, unlike the V.35 recommendation, no circuit to detect an adverse state is 
implemented.  Note that unlike the scrambler shown in Figure 15, which can actually be thought of as 
a data-independent bit mask, the EMWIN-FSK descrambler is a data dependent shift register. After 
the data has been properly descrambled, a header consisting of six asynchronous null-bytes (with its 
corresponding start and stop bits) indicates the beginning of the data field.   After synchronizing the 

cf

0f

1f
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FSK data, the packet is parsed, and the appropriate data is written to disk or sent over a socket 
according to the EMWIN-I specification.  

4.9.1 Symbol Timing Acquisition 

The FSK symbol timing is initially acquired by looking for a “01” sequence transition [26]. The 
outputs of the two running average blocks (for 0f  and 1f ) are monitored over the duration of two 
symbol periods. For each sample on each correlation output stream, the current value is compared to 
the maximum value seen so far. If a new maximum is found, three values are recorded: 

1. New maximum. 
2. Current sample number, relative to some arbitrary starting point. 
3. Value of the other channel. 
 

Referring to Figure 20 when one of the channels is at the maximum, the other channel should be at 
the minimum. Assuming a “01” sequence, there will be one large value for each channel. Let the 
maximum value for channel 0 be A, while the value for channel 1 at the same time is B.  Likewise, let 
the maximum value for channel 1 be C, while the value for channel 0 at the same time is D. A lock 
condition is declared if the following four conditions are met: 

1.   CA ,  
2. BA    
3. DC   
4. CA 15.187.0   

 
The value,  , is set to the number of samples/symbol squared and divided by 4. Condition-1 requires 
that the peaks be high enough such that if the input AGC is set to 1.0, at least 41 of the power is in 
each peak. The value of   is a programmable threshold, greater than 1. Conditions 2 and 3 require 
that the peak be at least   times larger than the trough. Condition-4 requires that the peaks on 
channel 0 and 1 be approximately the same. Once the lock condition is satisfied, the optimal sampling 
point is computed by taking the average of the offsets where the maximum values occurred for 
channels 0 and 1. 

If a lock is not detected for the observation window, the window is shifted by one full symbol and the 
operation is repeated. The actual symbol detection is started from the next symbol. The initial sample 
counter is set to T-x, such that a new symbol is declared x samples after the current time, where T 
represents the symbol duration. The value of x  is estimated by averaging the times of the two peaks, 

0p  and 1p  as )(21 10 Tppx  . 
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Figure 20. Detailed diagram of FSK timing acquisition block. 

4.9.2 Symbol Timing-Tracking 

A classic early-late timing tracking structure is used for the EMWIN-I tracking mechanism loop as 
shown in Figure 21 [19].  In an FSK signal, at any given time, if one tone correlation output 
represents signal, the other output represents noise.  The loop should be driven by signal, not noise.  
Because of that, the first operation of the timing tracking loop is to select which correlation output 
represents signal, and drive the loop with just that output.  The output of the loop, err , drives the 
sampler as shown towards the end of Figure 19.    
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Figure 21. Detailed diagram of FSK symbol timing block. 

4.10 The Data Link Layer 

After all four data signals, EMWIN-I, EMWIN-N, LRIT, and HRIT, are demodulated and decoded, 
they are sent to a data-link layer processor, as shown in Figure 16, Figure 17, and Figure 19 
respectively, for final processing.  This processing layer begins by synchronizing the data to a header 
sequence, and ends by either writing the LRIT and EMWIN file products to disk, or by sending bytes 
of data over a socket for further processing using a separate application.  

4.10.1 EMWIN-N, HRIT and LRIT CCSDS Packet Processing 

The data–link layer process is very similar for EMWIN-N, LRIT, and HRIT because they use a 
similar CCSDS packet structure as shown in Figure 15. The data file that processes these CCSDS 
packets in our C++ software solution is GOESProcessor.cpp. The first step of the process is 
synchronizing the frames to the 32 bit CADU header.  After synching to the CADU header, the 
payload is de-randomized and then RS decoded. The RS decoder determines whether the decoded 
packet is error free if it still has errors, in which case it is discarted.  

4.10.1.1.1 CADU Frame Synchronization. CADU frame synchronization is performed by 
sliding a window of 32 bits and checking the sequence against the CADU packet header. If a bit 
sequence that matches the header is found, then frame synchronization is declared.  In an ideal world, 
one would force all 32 bits to match the CADU header sequence in order to declare that the frame is 
synched and valid, however, this could cause many packets to be missed under high noise conditions.  
It is important to set a suitable frame-synchronization threshold (lower than 32 bits).   

Let the number of differences between the header sequence and a portion of the data sequence be 
denoted by 

 )10),32,,1(( ACFFCIDxrxors 
 

The 32-bit section of the data sequence that is being evaluated for frame-synchronization is 
represented as )32,,1( 

r .  The summation represents the total number of differences between the 
32 bit section of processed data and the ideal header.  For instance, if the 32 bit section of data differs 
in 5 of 32 places from 0x1ACFFCID, then 5s .  A frame is detected or missed based on the value 
of s and the frame-synchronization threshold: th .  
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Frame Synch Found:  ths 

 
No Frame Present:           ths 

 
 

Over extremely adverse channels, some frame headers have 20s (which ultimately means that 20 
out of 32 bits in the header are incorrect), yet the packet can still be decoded after RS decoding.  To 
handle such cases, there are four states of frame-synchronization lock.  The value th

 
varies based on 

the lock-state.   

Lock State-0 is defined as being completely unlocked, and thus has the most stringent frame 
synchronization threshold requirement to prevent a false detection. On the other hand State-3 is 
defined as being ideally locked, and thus the least stringent threshold. On Figure 22 a synchronization 
state machine diagram is shown.  Each state has a lock status number and its associated frame-synch 
threshold. The figure also shows the transition cases to go from one state to the next.  

 

Figure 22. CADU Frame synchronization lock state graph. 

The lock state remains unchanged until an event happens that causes a state transition.  The receiver 
begins in State-0, and thus the 32-bit sequence must perfectly match the CADU header to declare a 
frame-synch.  This stringent requirement remains in place until a frame is found and successfully 
decoded without error.  From there, the state machine goes immediately to State-2.  In this state, we 
assume that successive headers can be found with exact synchronization, i.e., exactly 1024 bytes 
away from the previous header.  While in State-2, if five consecutive frames are found with 
uncorrectable errors in all five frames, then State-2 is downgraded back to State-0.  If five 
consecutive frames are detected and decoded error-free, then the state machine is upgraded to State-3.   

State-3 assumes that you are perfectly locked, and thus the threshold of tolerable errors is set to a very 
high number.  The default number of tolerable errors in the header for this state is set to 22. The user 
can set its desired threshold for State-3 by setting the flag “–thresh x” at the command prompt, where 
“x” is the desired threshold. A command of “–thresh 32” would guarantee that all packets are 
forwarded to the RS decoder when in State-3.  If a frame isn’t found, then the lock state is 
downgraded to State-2.   
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Synchronization can be lost unexpectedly for a number of reasons, including RF impairments such as 
an abrupt frequency drift, fades in the received signal, etc.  It is common for a packet to appear 
unlocked in severe noise conditions (due to excessive errors in the header sequence) but this does not 
always imply that the software receiver has lost lock.  This is the reason why, for State-3, the 
threshold is set to a very high value to ensure that lock is maintained in high noise conditions.  The 
State-machine can still detect when lock is truly lost since as soon as a single frame is found to be in 
error, State-3 is immediately downgraded to State-2, and from there, it can easily restart the state 
machine and go back to State-0.  

When in State-2 or 3, the next frame in the transmission should be exactly 1024 bytes away.  If a 
frame is not found exactly 1024 bytes ahead of the previous frame header, then the software radio 
advances 1024 bytes and searches for the next header in the exact location is expects to find it.  No 
attempt is made to search in the middle of a frame while in-lock since it would reduce throughput and 
increase the chance of locking to a false header. If headers cannot be found in the positions they are 
expected to be in, the state machine moves to State-1.   

The threshold in State-1 has a threshold of two errors allowed. With the threshold set to such a 
stringent level, it is safe to search byte by byte (in the middle of a packet) to try to find the next 
header.  After scanning 3072 bytes (three packets) without success, the state machine assumes it lost 
all time reference and returns to State-0 to begin all over again.  Note that two missed frames are pre-
requisite to entering State-1, thus if an additional three frames are missed in State-1, then five total 
consecutive frames have been missed.   

There is one additional caveat to the state diagram. The EMWIN-N signal has a differential decoder 
which removes the polarity ambiguity; however the LRIT signal does not have such a feature. When 
the LRIT receiver is in State-0,  It will alternatively try to synch to the assumed header and its 
inverted (180) version.  

4.10.1.1.2 RS Decoding. Once the CADU frames are synched, they are sent to the (223,255)-RS 
decoder. As shown in Figure 15, the CADU payload contains 1020 bytes of data.  The 1020 bytes are 
comprised of four interleaved RS frames of 255 bytes each.  The RS decoder de-interleaves the four 
RS frames and checks to see if each of the four syndromes are correct. If one of the frames is in error, 
the entire CADU packet is dropped. 

4.10.1.1.3 VCDU Product Identification. The first step after successful RS-decoding is to read 
the VCDU counter.  The VCDU counter increments sequentially.  If a frame is missed, the difference 
between the current VCDU marker and the previous VCDU marker is larger than one.  An error is 
reported to the users if missed CADU frames are detected.   

The following steps occur after obtaining the VCDU marker: read the APIDs, extract the file names, 
and write the files to the disk.  In the case of LRIT, the extracted data file goes through a cyclic 
redundancy check (CRC).  LRIT images are compressed and must be decompressed using Rice 
decompression before the images can be displayed.  

Each CADU frame represents a single part of an EMWIN or LRIT product.  Some products, like 
short text messages, require two parts, while other files, like EMWIN JPEG images, can require over 
80 parts.  Every part of the file contains file name information, the current product part number, and 
the total number of parts the product possesses.  If subsequent parts of a given file (i.e., 
TRKINUS.GIF) are not received (i.e., if parts 13 and 15 are received, but 14 was never accounted 
for), we alert the user with an error, empty all the buffers that store the temporary files, and the 
complete file is discarded. 
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4.10.2 EMWIN-N Data Socket Output 

The EMWIN/HRIT prototype solution has preliminary support for outputting data to a local socket.  
The intention for sending data over the socket is to allow third party vendors to develop the weather 
data user interface.  The system has only been verified with one third party application: Wx Weather 
Message [28].  

To activate the socket output, run the executable from the command line with the flag, -socket “port 
number.”  For example, if you want the solution to output data to port 18000, then run the executable 
with –socket 18000.  Once the program executes, it will send a message stating that it has established 
a server at port 18000 and is waiting for a client to connect.  At this point, the third party application 
should request a connection and begin interchanging data. The program does not have a time out 
period, so if no third party application is there to connect, the program will wait indefinitely.   

The data sent over the socket is a continuous stream of raw data bytes.  The bytes are not 
manipulated, and there is no advanced handshaking or network protocols used to transmit the data.  
Once the connection is initially established, the stream of bytes is sent over the socket at real-time 
signal transmission rates.  If the information data rate for HRIT is 450 Kilo-info-bits/second, then the 
byte stream being sent over the socket will also be that rate.   

The data cannot be sent over the web, or over a physical device port, or to a user defined IP address.  
The data is always transmitted to localhost IP address 127.0.0.1.  The only flexibility is the port 
associated with localhost.  That means that the third party software must be run on the same machine 
as the EMWIN/HRIT solution and must always establish a connection to localhost.   

The data being sent over the socket is a portion of a CVCDU packet, which is shown at the bottom of 
Figure 15.  This packet has three zones, the VCDU primary header, the VCDU data zone and the RS 
check symbols.  The VCDU data zone is 886 bytes, however the first 2 bytes in the VCDU data zone 
are the Multiplexed Protocol Data Unit (M_PDU) headers as described in [6].  These 2 bytes are 
discarded and the remaining 884 bytes of the VCDU data zone are transmitted over the socket.   

4.10.3 HRIT and LRIT Data Socket Output 

LRIT and embedded EMWIN data can also be sent over a socket.  Interaction between the 
EMWIN/HRIT prototype solution and a 3rd party LRIT GUI has not been verified. 

Because LRIT possesses two distinct products, LRIT and EMWIN, our system utilizes two sockets.  
The flag, –socket “port number” will send the embedded EMWIN data over “port number”, while the 
flag –socket_lrit “port number” will send the LRIT data over a different port number.  Thus to send 
embedded EMWIN data over port 10000, and LRIT data over port 18000, one would set the flags to –
socket_lrit 18000, -socket 10000.    

The first 892 bytes of the CVCDU header is sent over the socket for the LRIT data.  Every packet is 
sent over the socket, so it is up to the third party software to handle the data accordingly by reading 
the VCID and APID markers.  Some of the packets will be fill packets, and some packets will contain 
EMWIN data.     

The embedded EMWIN data will be handled exactly as described in the previous section.  Unlike the 
LRIT data, interaction between embedded EMWIN data and 3rd party GUI software has been verified.   



 

37 

4.10.4 EMWIN-I Data Link Layer Processor 

The EMWIN-I signal does not have CCSDS packets, and its transmission specification is explained, 
with references, in Section 4.8. The data link layer processor follows the transmission specification 
and is done in file FSK_Imageprocessor.cpp in the EMWN/HRIT solution.  Because there is no 
advanced coding or CCSDS packet structure, there is no elaborate frame-synchronization process.  

Unlike the HRIT and LRIT and EMWIN-N signal, the first step in the process is not frame-
synchronization, but instead bit-level de-randomization.  The output of the de-randomized data still 
contains asynchronous start bits and idle sequences. This asynchronous behavior must be accounted 
for when performing frame synch, and when processing the packet.    

After bit-level de-randomization, the receiver must synch to the 6-byte null character header.  If the 
6-byte null header cannot be found, the receiver tries to synch to the inverted sequence in order to 
resolve the polarity ambiguity.   

Once a header is found, the data is parsed for a file name, date and time, and most importantly, the 
check sum flag.  The check sum flag that is sent is used for error detection.  The check sum for FSK, 
as explained in [24], is the sum of all the ones within the 1116 byte FSK packet.  Once the entire data 
sequence is processed, the sum of all the ones received is compared to the check sum flag transmitted 
at the beginning of the packet.  If these numbers do not agree, an error is sent to the user and the file 
is not written to disk.  

4.10.5 EMWIN-I Data Socket Output 

The data socket handling protocols and options are identical to the HRIT and LRIT and EMWIN-N 
signals.  The entire 1116 byte EMWIN-I FSK packet is sent over the socket, including null headers.  
Before sending data over the socket, the asynchronous 8-bit (8,N,1) format is removed, so there are 
no longer any start and stop bits encapsulating the EMWIN-I data.   
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5. EMWIN/HRIT Prototype Solution Performance 

5.1 Noise Performance 

5.1.1 Testing Methodology 

There are three ways that the EMWIN/HRIT software receiver is tested for noise performance.  

1. A live satellite signal degraded with IF noise  
2. A controlled signal using a signal generator degraded with IF noise. 
3. A controlled signal using a file source including signal impairments. 

5.1.1.1 Testing Methodology for a Live Signal 

Figure 23 illustrates the live signal test environment.  The satellite dish used to perform the test was a 
2.3m dish with a G/T specification of 10.5 dB/K.  The dish was pointed at GOES-12 for LRIT and 
EMWIN-I testing, and GOES-10 for EMWIN-N testing. 

 

Figure 23. Testing setup for live signal feed experiment. 

The dish had an RF front end integrated in it that provided filtering, amplification, and 
downconversion from L-band to 140 MHz IF using the Quorom Communications LNB model no. 
1691.10-137.5, with a stated noise figure of 0.5 dB, and an oscillator accuracy of 2.5 ppm.  The 
GOES-R IRD requires that the link be closed with a G/T of -0.3 dB/K.  To simulate a system with a 
lower G/T spec, we degraded the signal using an IF noise generator supplied by Noise/Com Inc. 
model number UFX.   

At the output of the signal + IF noise combiner, there is an additional filter and amplifier.  These were 
there to make sure that the levels going into the AID board were sufficient and to filter the wideband 
noise being generated by the Noise Comm IF noise generator.  The Noise Comm generates a 3-GHz 
wideband noise signal, and in practice, the AID board would not experience noise with this 
bandwidth due to filtering provided by the LNB.  
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The performance metrics for the system are CADU Frame Error Rate (FER) at the output of RS 
decoding and Bit Error Rate (BER) at the output of Viterbi decoding.  The RS decoder automatically 
reports when one of the RS frames possesses an uncorrectable error within a CADU frame.  If one of 
the four RS frames is in error, then the entire 8192 bit CADU frame is declared erroneous.  Missed 
CADU frames also contribute to the FER, and they are computed by examining the VCDU markers 
as described in Section 4.10.1.   

To estimate the BER of an unknown signal, we assume that the output of the RS decoder is error free 
if there are no uncorrectable errors detected in the frame. We compare this perfect sequence to the 
output of the Viterbi decoder (input to the RS decoder) to estimate the BER at the output of Viterbi 
decoding.  We do not approximate the BER at the output of RS, but instead focus solely on FER.   

5.1.1.2 SNR Definition 

The SNR was measured two ways.  The first way was with the spectrum analyzer, and the second 
way was with the EMWIN/HRIT software receiver using the input to the Viterbi decoder. To measure 
the SNR using the spectrum analyzer, we would measure the in-band carrier power of the signal.  To 
measure power, we integrated the power spectral density over a band of 450 and 40 kHz for LRIT and 
EMWIN respectively. Because this signal contains both noise, N , and signal, C , the measurement 
reported by the scope is actually NC  .  In order to estimate 0NC , we had to measure the noise 
density and the total in-band noise power.  Generally speaking, )(10log100 BWNN  , where 
BW stands for bandwidth, and can be either 450 or 40 kHz, depending on which signal is being 
measured.  We made no assumptions that the noise was perfectly flat, thus N was never computed 
analytically, but rather it was directly measured with the spectrum analyzer.  Once there was a good 
measurement for NC  , N , and 0N , 0NEb could be computed using the following formula.  
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In the above formula, M is the number of bits/symbol for the modulation constellation, and the code 
rate is simply the rate of the error correction code. For LRIT signals, the symbol rate, code rate, and 
M were 293883 symbols/second, 1/2(*223/255) = 0.437, and M = 1 respectively.  For EMWIN, the 
symbol rate, code rate, and M were 17970 symbols/second, 0.437, and M=2 respectively.   

When working with FER, the code rate was ½*(223/255) because it takes into account both codes, 
while the code rate for BER was only ½ since it takes into consideration just the Viterbi decoder. 

The other way to measure SNR was to measure 0NEs directly in software after demodulation.  In 
this case, the SNR estimate is not being defined at the input to the EMWIN/HRIT receiver, but 
instead at the input of the software-based Viterbi decoder.  Figure 24 is a plot of a signal constellation 
at the input of the Viterbi decoder. The histogram of the data shown in Figure 24 would represent two 
Gaussian distributions centered around the software AGC levels of ±10.  Denote the mean of one 
Gaussian distribution as   and the variance 2

n .  The estimate for SNR is  

s nE N 2 2
0 10log10( 2 ) 

 

We use an iterative signal processing algorithm called the expectation maximization algorithm to 
optimally determine   and 2

n  of the Gaussian distributions. 
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Figure 24. LRIT constellation points. 

Measuring SNR at the input to the Viterbi decoder obviously assumes that the EMWIN/HRIT 
solution has no implementation loss from the input to the AID board to the input of the Viterbi 
decoder.  Indeed, in most cases the difference between the SNR measured at the input of AID board 
and the input of Viterbi decoder were less than 0.2 dB.  Using the digital data to estimate SNR instead 
of a spectrum analyzer is helpful for two reasons.  First, the measurement accuracy and precision are 
better.  Second, the digital method allows you capture the time varying nature of the SNR more 
effectively.   

There are several ways that measurement inaccuracies can be introduced when measuring the SNR of 
a live signal.  The best measurement accuracy is achieved when you can turn modulation off while 
doing the measurements.  Modulation was not turned off while testing with the live signal.  There was 
no way to measure just the noise in-band without measuring the carrier power, so an assumption was 
made that the noise was perfectly flat, thus the noise power at 137.5 MHz was equivalent to the noise 
at 139 MHz. In this case, we could measure the noise power over 139 MHz, where no signal was 
present, and assume that it held true for the band of interest of 137.5 MHz.   

It was observed at times this was not necessarily true.  There is no guarantee that the noise estimate 
did not posses undesirable signals that were slightly above the noise floor or if the noise measured at 
139 MHz was precisely equal to the noise at 137.5 MHz.  Sometimes, the noise floor appeared 
uneven causing measurement inaccuracies.   

When measuring the carrier power, NC  , the signal might contain distortions or interferers that 
cannot be fully accounted for.   

The rapid fluctuations in a real signal meant that significant averaging had to be used in order to get 
reasonable measurements.  This introduced many other potential measurement problems.  Long 
averaging blurs time dependent characteristics that can greatly affect the performance of the system.  
For instance an interferer can corrupt a signal over a short burst of time, affecting instantaneous FER, 
but can be averaged out over time as far as SNR measurements are concerned.  The performance of 
the down-converter might fluctuate sporadically over time as well and that might be averaged as well.  
In general, the SNR is a function of time.  It was observed that the SNR changed 1.5 dB over a 3 hour 



 

42 

period without any changes to the lab setup.  All of these issues make it difficult to measure SNR 
performance consistently over a long period of time.  

Lastly, estimating Es/No using the data at the input of the Viterbi decoder can produce inaccuracies in 
three main ways.  The first way is that the system may have had a large implementation loss due to an 
interferer, signal distortion, or RF impairments that invalidate the assumption of near zero 
implementation loss between the input of the AID board and the input of the software Viterbi 
decoder.  The second way is when the Es/No is so low that the noise estimation algorithm has a non-
negligible estimation error.  Lastly, if the noise is non-Gaussian, for example if there is residual phase 
noise present, then the Expectation Maximization algorithms assumption of additive white Gaussian 
noise (AWGN) does not hold, and the estimate accuracy will suffer.   

Despite all of these potential measurement inaccuracies, the SNR was measured very carefully, and 
the data presented in this section is reliable.   

5.1.1.3 Testing Methodology for a Signal Generator-based Signal Source 

Figure 25 illustrates the test setup for the signal generator tests. The live feed was replaced with a 
controlled signal source using a signal generator.  One thousand valid CADU frames,  containing 
8192 bits each, of clean CCSDS EMWIN and LRIT binary data was loaded into the signal generator, 
then the signal generator was set to the appropriate modulation, power and frequency to generate the 
signal IF waveform.  In order to compare the results to the live signal, the original data rate for LRIT 
of 293,883 symbols/second was used instead of the proposed 927 ksymbol/second rate for HRIT in 
the GOES-R era.  The SNR was for the most part known, but it was also measured with a spectrum 
analyzer and with the digitized demodulated data to ensure accuracy.  FER and BER were measured.  

 

 

Figure 25. Diagram of signal generator testing setup. 
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5.1.1.4 Testing Methodology Using a File Source 

Because the EMWIN/HRIT receiver is software based there is an option to drive it with a file instead 
of driving it with a stream of USB samples from the AID board.  The data files contain modulated 
EMWIN and LRIT data corrupted by AWGN, phase noise, and carrier drift.  Figure 26 illustrates the 
test setup for testing with a file source.  There is no hardware involved in this process.  A 
mathematical software tool called Matlab was used to generate the waveform and write the data to a 
file.  The EMWIN/HRIT software application used this data file as an input.  The motivation for 
using a file source was to characterize the receiver performance over a wide range of known noise 
and RF impairment levels.   

 

Figure 26. Diagram of testing using a file source. 

The software generated waveform used perfect CCSDS LRIT and EMWIN binary data and then 
modulated them according to the modulation parameters.  Denote the clean digital waveform as 

( )x t . 

After ( )x t  is generated, AWGN, phase noise, and carrier drift were added to the waveform, and the 
final waveform was then written to a file and read by the software receiver.  

The phase noise was added first.  It can be expressed in the following equation 

)()()( tj
pn etxtx 

 

Phase noise is modeled by a Wide-Sense Stationary (WSS) random process )(t .  Because it is WSS, 
it has a time domain autocorrelation function )( .  The Fourier transform of )(  generates the 
spectrum )( .  Figure 27 shows the spectrum of the phase noise used in the test.  The phase noise 
level was set using the 2σ level.  Thus, a phase noise of 16 would mean that the random process 

)(t would be scaled such that 
*180

(2 { ( ) ( )}) 16E t t 


 .  An example of BPSK with a phase 
noise of 16 and SNR of 20 dB is shown in Figure 28.  
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Figure 27. Phase noise spectrum of waveform generated by a file source. 

 

Figure 28. File source based LRIT signal with 16 of phase noise and SNR = 20 dB. 

The carrier drift was added after adding phase noise. It was reported that EMWIN and LRIT systems 
can face a peak-to-peak drift rate of 5 kHz over 20 minutes.  That means that the frequency drifts up 5 
kHz in 10 minutes, then back down 5 kHz in 10 minutes.   To model this drift profile we used a 
cosine wave instead of a linear drift profile to better approximate real conditions.  If a linear profile is 
used, a 5 kHz rate over 20 minutes peak-to-peak would result in a constant drift rate of 8.3 Hz/second.  
Because the profile is a cosine shape, its rate exceeds 8.33 Hz/second at some points, and approaches 
0 Hz/second at other times.  Below is an equation that represents the drift profile.  

2
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In the above equation, df , represents the peak-to-peak drift over 20 minutes. The maximum 
instantaneous drift rate is 1200df , which is about 1.5 times (π/2) faster than the instantaneous 
drift rate of the linear drift profile.   

The final data stream, ( )rx t , was created by adding the drift, the carrier frequency cf , and AWGN 
denoted by ( )n t . 

2 [ ( )]
( ) ( ) ( )cj f t dr t

r pnx t x t e n t
  

 

Because the waveform was created digitally, the Eb/No levels could be tightly controlled.    

5.1.2 Noise Performance Results 

All three testing methodologies are used for both the EMWIN and LRIT signals.  The Eb/No metric is 
estimated as discussed in the previous section.  Recall that when using a file source, the Eb/No is 
known precisely and added digitally. For the live signal, it is estimated with a spectrum analyzer, and 
for the signal generator, it is estimated with the spectrum analyzer and analytically computed using 
known parameters to ensure consistency.   

5.1.2.1 LRIT BPSK Results 

The BER performance results of the EMWIN/HRIT solution using the various testing methodologies 
are shown in Figure 29.  Recall that the BER is defined at the output of the Viterbi decoder, and thus 
does not take into consideration the RS error-correction performance.  The full LRIT link, including 
RS decoding, is typically closed when the BER at the output of Viterbi is 10-3.   

 
Figure 29. LRIT BER Performance Test Results Using All Test Methodologies. 
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The testing results show that the implementation loss of the EMWIN/HRIT system can be as low as 
0.3 from theory in terms of BER performance.  There are two file-source tests, one with a 5 KHz 
peak-to-peak drift rate over 20 minutes and a phase noise of 4, and the other with a drift rate and 
phase noise of 20 KHz and 16 respectively.  The less stressed file source test showed results worse 
than the signal generator test but better than the live signal.  The more stressed file source experiment 
actually performed worse than the live signal, which implies that the live signal did not have that 
much phase noise or drift present.   

The Matlab curves and theory are very smooth, while the live signal and signal generator curves are 
reasonably smooth.  All of the curves are within 0.25 dB of each other.  According to the BER plot 
illustrated in Figure 30, the implementation loss for our system is in the 0.3 dB range, however, 
implementation loss can only be officially determined when measuring the FER.   

There did not appear to be much of a tradeoff between drift-rate tolerance and BER when testing with 
the file source.  The phase bandwidth and timing bandwidth are always set to 3 kHz and 100 Hz 
respectively.  These bandwidths are adequate to track dynamics within system specifications.  If these 
bandwidths are significantly altered, the performance will suffer.  

The FER is very difficult to measure, especially for the live signal.  The tests must be run over a long 
period of time with random fluctuations, and the theoretical FER curve is very sharp.  It goes from 
10-2 to less than 10-5 in less than 1 dB.  Error events that contribute to the FER are burst errors, cycle 
slips in the phase and/or tracking loops, undetected CCSDS synchronization headers, falsely detected 
CCSDS synchronization headers, in addition to standard AWGN. These events do not affect the BER 
nearly as drastically as FER, if at all. Add in measurement inaccuracies and it becomes apparent that 
FER curves would not be terribly accurate.   

Instead of making a curve, we have generated tables that have three basic data points.  The first data 
point is where the FER is extremely high and the link is totally unusable.  The second point is where 
the FER is moderate leading to lost data, but still fairly usable. The final point is where the FER is 
confidently less than the system specification of 10-4.  This data is shown in Table 12 for all three 
testing methodologies.   

Table 12. LRIT Frame Error Rate Performance for all Testing Methodologies 

 
 

5.1.2.2 EMWIN O-QPSK Results 

The EMWIN-N BER performance using a live-signal test, signal-generator test, and one file source 
test that has a drift of 1 kHz and phase noise of 4, is shown in Figure 30.  The live signal feed used to 
test the EMWIN signal was GOES-10.  The live signal and the signal generator tests result in nearly 
identically performance.  This implies that the additional RF impairments present in the live signal do 
not significantly degrade BER performance.  The file source test shows noticeably better performance 
compared to the other testing methods.  Again, implementation loss is established by looking at the 
FER instead of BER. However, the BER implementation loss appears to be a little under 0.5 dB and 
1 dB at 10-4 for the file source and live signal respectively when using the BER metric.  

      Signal Generator
Eb/No FER Eb/No FER Es/No FER

2.7 1.60E-01 2.8 0.12 2.7 1.50E-01
3.2 1.40E-03 3.1 1.00E-02 3.1 8.00E-04
3.7 <1e-4 3.7 <1e-4 3.6 <1e-4

      Live Signal File Source Stressed
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Five different file sources that represent varying degrees of RF-impairments are compared in 
Figure 31.  The first three curves compare performance across drift rates of 1, 3, and 4 kHz, while the 
last two curves compare performance across phase noise levels of 4º and 12.  The EMWIN-N 
receiver cannot tolerate as much drift as the LRIT signal, thus we limit the experiment to a drift rate 
of 4 kHz peak-to-peak over 20 minutes.  Also, because EMWIN-N is an OQPSK signal, it is much 
more susceptible to degradation due to phase noise.  For the LRIT signal, a single loop bandwidth is 
good over a wide range of frequency drift rates, however the EMWIN-N signal requires one loop 
bandwidth for small levels of drift and a different loop bandwidth for other levels of drift.  The carrier 
recovery loop-bandwidth for drift rates of 1 kHz or less is 120 Hz, and 180 Hz otherwise.  The clock 
recovery loop bandwidth is fixed at 18 Hz.  

At a BER rate of 10-5, four of the curves have approximately the same performance, with a loss of 
about 0.4 dB compared to theory.  The final curve, which represents 12 of phase noise, has a loss of 
about 0.8 dB.  

 

Figure 30. EMWIN-N bit error rate test results using all test methodologies. 

 
Finally, the FER performance is shown in Tables 13, 14, and 15.  The FER for the EMWIN-N signal 
was considerably more difficult to characterize.  The carrier power seemed to be very dynamic 
compared to the LRIT signal when testing with the live GOES-10 feed, therefore it was very difficult 
to estimate FER vs Eb/No precisely.  The test would begin at 2 dB, then vary widely between 1.5 and 
2.5 dB throughout the test run.  On a given day, the link could be closed as low as 2.6 dB, but the 
following day, the link required an additional dB to close.  

When testing EMWIN-N with the signal generator, the transition region was also difficult to find.  At 
one point, the FER is unacceptably high.  At a level 0.25 dB higher, sometimes you would get fairly 
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reasonable FER for awhile before the tracking loops would run into successive cycle slips and FER 
would degrade significantly.  At 0.25 dB higher than that, the performance was great and the link was 
closed.  For these reasons the FER isn’t tabulated for the live GOES-10 feed or the signal generator 
tests.   

As one can see in Table 13, we claim that the link can be closed in the range of 2.9 to 4.2 dB.  The 
reasoning for this behavior is because over an extended period of time, the system ran error free with 
an estimated Es/No of 2.9 dB on a given day, but required 4.2 dB on another day. As it was mentioned 
before, one of the reason for this behavior is that the overall BER performance over an extended 
period of time (required to get meaningful statistics) is dominated by the lowest Es/No of the testing 
period. If the channel had a theoretical AWGN behavior then these variations would not occur. 
However a better characterization as a fading channel would be able to predict such behavior. The 
signal generator was able to close the link at 3.4 dB, and this is the level that the live GOES-10 
typically closes the link under.  

 
Figure 31. EMWIN-N BER performance comparison using file sources with varying levels of RF impairments. 

Table 13. EMWIN-N FER Performance Over GOES-10 Live Feed and Signal Generator Testing 
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Eb/No FER Eb/No FER
2.9 2.00E-01 2.2-2.9 >1e-2
3.4 <1e-4 3.4-4.2 <1e-4

      Signal Generator       Live Signal (LA)
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Table 14 and Table 15 both represent testing with a file source.  In Table 14, the phase noise was 
fixed at a moderate level of 4 while the carrier drift was varied from 1 kHz to 4 kHz.  At 1 kHz, the 
link is closed very well at 3.6 dB, leaving a lot of margin. While at 3 and 4 kHz, it closes at 4.6 dB, 
which is right on system specification limits.   

Table 14. EMWIN-N FER Performance Using a File Source with Varying 
Levels of Drift Rate with a Fixed Phase Noise of 4. 

 

In Table 15, the carrier drift is fixed at 1 kHz, while the phase noise varies from 4 to 16.  At a 
moderate level of 8, the link is closed at 4.1 dB leaving 0.5 dB margin left.  At 12, the link closes at 
4.6 dB, which coincides with the system limits.  Finally, at 16, the link does not close at a reasonable 
level, and the implementation loss is 1.5 dB larger than the allocated maximum in system 
specifications.  A phase noise of 16 is excessive, and if users are using reasonable LNBs, like the 
ones manufactured by Quorum (that was used for testing), phase noise will rarely exceed these levels.   

Table 15. EMWIN-N FER Performance Using a File Source with Varying  
Levels of Phase Noise with a Fixed Drift of 1 KHz 

 

In conclusion, both LRIT and EMWIN-N close the link with the live signal with an implementation 
loss of under 2 dB, and thus meet system specifications.  The EMWIN-N signal is very sensitive to 
drift and phase noise, however, the live signal feed and Quorom down-converter used in our 
experiment never produced excessively high levels of drift or phase noise that caused the system to 
have an implementation loss of more than 2 dB.   

5.1.2.3 EMWN-I FSK Results 

The Performance of EMWIN-I FSK was measured using the GOES-12 live signal feed, and the 
results compared to theoretical FERs computed via computer simulation. Since the EMWIN-I signal 
does not use any type of error correcting code protection, we only measure the FER, and not the BER.  
To measure FER, we compared the check sum transmitted during each 1116 byte packet, and the 
check sum computed from the received bits as specified in Section 4.10.4.  The FER is plotted in 
Figure 32.  

The theoretical curves were generated using Matlab, where the program’s built in modulator and 
demodulators were used over AWGN noise, using packets of 1116*8 = 8928 bits. Due to the low 
transmission rate of the FSK signal, the results for low frame-error rates took many hours of 
simulation.  

Eb/No FER Eb/No FER Es/No FER
2.7 1.00E-01 3.1 1.00E-01 3.1 1.40E-01
3.1 1.00E-02 4.1 1.00E-03 4.1 1.40E-02
3.6 <1e-4 4.6 <1e-4 4.6 <1e-4

Drift = 1 kHz Drift = 3 kHz Drift = 4 kHz

Eb/No FER Eb/No FER Es/No FER Es/No FER
2.7 1.00E-01 3.1 1.00E-01 3.1 1.00E-01 3.1 1.00E-01
3.1 1.00E-02 3.6 1.00E-03 3.6 1.00E-02 4.1 1.00E-03
3.6 <1e-4 4.1 <1e-4 4.6 <1e-4 6.1 <1e-4

Ph No = 4    Ph No = 8 Ph No = 12 Ph No = 16
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As shown in the Figure 32, in the waterfall region of the FER curve, we experienced an 
implementation loss of ~2 dB when using a Signal Generator and ~3 dB for the live signal.  For the 
live-signal case an error floor at 2.10-3 appears for Es/N0 values above 17 dB.  For the simulated 
environment using a Signal Generator, performance appears to begin to floor around Es/N0= 18.5 dB, 
however no errors were found after simulating 45,000 packets at Es/N0= 20 dB. 

 

Figure 32. EMWIN-I (FSK) Frame Error Rate (FER) performance over GOES-12 compared to 
an ideal FSK modulation over AWGN noise. Packet size is 8128 bits. 

5.1.3 GOES-R Frequency Plan Noise Performance Tests 

In this section, we conduct an all signal generator test to emulate the GOES-R waveforms.  In GOES-
R, there will be a Global Re-Broadcast signal (GRB) located at 1690 MHz (136.5 MHz IF using 
Quorum down-converter) and HRIT will be centered at 1697.4 MHz (143.9 MHz IF).  As shown in 
Figure 33, there are two signal generators, one for GRB and one for HRIT, that are combined before 
adding noise.  The purpose of this experiment is to better represent the real frequency environment of 
the GOES-R signal.  Ideally, there should be no difference in performance between this experiment 
and the standard frequency as tested before. 
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Figure 33: Diagram of GOES-R frequency emulation testing setup including  
HRIT and GRB signals using AID board. 

The GRB signal has a proposed Equivalent Isotropically Radiated Power (EIRP) of 105.25 dBm per 
polarization while the EIRP for HRIT was 89.25 dBm.  Because of this, the carrier power is set to 
16 dB higher for the GRB signal than the HRIT signal on the signal generator.  The GRB signal is 
emulated using a QPSK signal with a symbol rate of 9 Mega-symbols/second, and root raised cosine 
pulse shape of 0.25  , and a resulting bandwidth of 12 MHz. The HRIT signal has a symbol rate 
of 927 Kilo-symbols/second, and an 0.50  resulting in a bandwidth of 1.39 MHz 7.  In the 
previous tests, LRIT was tested, not HRIT, thus the rate was only 293,883 symbols/second and 
centered at 137.5 MHz, with no GRB signal present.  Below is a screen capture of the spectrum 
analyzer of the GRB and HRIT signals used to conduct the BER/FER tests in this section.  

                                                 
7 The HRIT-GRB test was conducted using a roll-off factor of 0.5, however the latest official GOES-R IRD specifies a roll-
off factor of 0.3.  This discrepancy would not significantly alter the results of the test. 
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Figure 34. Spectrum analyzer screen capture of the input HRIT + GRB signal including  
noise and SAW filter response. 

The FER and BER results for the HRIT+GRB signal generator simulation are identical to the results 
tabulated in the LRIT signal generator simulation tests.  This implies that the EMWIN/HRIT solution 
closes the link on current generation LRIT signals, and will be able to do the same for the future 
HRIT signal in the future, without much performance degradation.  

5.2 Throughput 

Because HRIT will be operating at 927 ksps, it is important that the throughput of our software 
receiver be at least 1 Mbps.  A throughput test must be conducted in order to ensure that our receiver 
can operate at higher rates.  Because the data structure and modulation properties of the new HRIT 
signal will be equivalent to today’s LRIT signal, throughput tests only need to be conducted on LRIT.   

In order to achieve bitrates that are over 927 ksps, our software splits the demodulator across two 
threads.  As it was explained on Section 4.7, the first thread consists of the software blocks from the 
input of the AID up to the Viterbi decoder. The second thread takes care of the Viterbi decoder and 
the remaining tasks, like frame synchronization and RS decoding. Throughput performance using an 
Intel® Core 2 CPU running at 2.66 GHz is shown in Table 16. To produce these measurements, we 
recorded a live feed of the LRIT 293 ksps signal into a local hard drive. We then ran the decoder to 
process the recorded data instead of a live satellite feed. A speed increase of about 1.8 times was 
achieved due to multi-threading.  

All dual core Intel processing based computers (laptop or desktop) that have been tested have 
sustained throughputs greater than the proposed 927 ksps HRIT data rates.  
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Table 16. Throughput Measurements for EMWIN-N and LRIT 

 

Signal Samples/Symbol Single Thread Mult. Thread

LRIT 2 1030 Ksps 1890
EMWIN-N 11 191 ksps N/A
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6. Conclusion 

The EMWIN/HRIT Prototype Solution uses a low-cost hardware digitizer that interfaces with a 
standard Windows based PC. This software solution allows processing of the EMWIN-I, EMWIN-N, 
LRIT, and also the future HRIT signal.  The proposed system-solution uses the same antenna and 
LNB as current generation EMWIN and LRIT solutions. The part costs of the new AID board are 
about $100, providing a worldwide-affordable solution. The proposed system operates using a PC’s 
USB interface for both data and power supply, eliminating the need for an additional power source.  

The future HRIT signal will have a similar waveform definition to the LRIT signal, with the 
exception that its data-transmission rate will be increased from 293 to 927 Ksps.  The latest 
throughput measurements using the AID box and an HRIT-simulated sequence allowed processing 
rates of more than 1.7 Msps using a portable laptop-machine. This demonstrates how users will be 
able to receive the different EMWIN / HRIT products using The Aerospace Corporation’s software 
defined radio, once the HRIT signal becomes available, sometime after 2013.   

The link budget for the new HRIT signal will allocate up to 2 dB of implementation loss margin for 
our solution.  Our proposed AID solution shows an implementation loss of about 1.8 dB, which 
achieves the system-requirement.    

The hardware and software are designed to work together providing a low-cost flexible solution. In 
this way, users have the flexibility of receiving a whole family of EMWIN/HRIT signals with a single 
hardware/software solution. Furthermore, compatibility with future transmission-protocols could also 
be added by means of a simple software update. 

All trademarks, service marks, and trade names are the property of their respective owner 
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7. Acronym List 

ADC Analog to Digital Converter 
AGC Automatic Gain Control 
AID Aerospace IF Digitizer 
ARD Aerospace RF Digitizer 
AWGN Additive White Gaussian Noise 
  
BER Bit Error Rate 
BPF Bandpass Filter  
BPSK Binary Phase Shift Keying 
BW bandwidth 
  
CADU Channel Access Data 
CCSDS The Consultative Committee for Space Data Systems 
CGMS Coordination Group for Meteorological Satellites 
CIC Cascaded Comb Filter 
CPU Central Processing Unit 
CRC Cyclic Redundancy Check 
CVCDU Coded Virtual Channel Data Unit 
  
DDFS Direct Digital Frequency Synthesizer  
  
Eb/No Energy per bit over noise density 
EEProm Electrical Erased Programmable Read Only Memory 
EIRP Equivalent isotropically radiated power 
EMWIN Emergency Managers Weather Information Network 
Es/No Energy per symbol over noise density 
  
fc center frequency 
FER Frame Error Rate 
FFT Fast Fourier Transform 
FFTW Fastest Fourier Transform in the West 
FIFO First Input First Output 
FIR Finite Impulse Response  
FOM Figure of Merit 
FPGA Field Programmable Gate Array 
fs sampling frequency 
FSK Frequency Shift Keying  
  
G/T Gain over temperature figure of merit 
GNU GNU’s not Unix 
GOES Geostationary Operational Environmental Satellite  
GPL General Public License 
GRB Global ReBroadcast System 
GUI Graphical User Interface 
  
HRIT High Rate Information Transmission 
  
I2C Inter-Integrated Circuit (interface) 
IF Intermediate Frequency 
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IO Input and Output 
ITU International Telecommunications Union 
  
Ksps Kilo-symbols per second 
  
LDO Low Drop Out (voltage regulator) 
LED Light Emitting Diode 
LNA Low Noise Amplifier 
LNB Low Noise Block Down-converter 
LPF Low Pass Filter  
LRIT Low Rate Information Transmission 
  
M&M Mueller- Müller (timing tracking) 
M_PDU Multiplexed Protocol Data Unit 
Mbps Mega-bits per second 
MFC Microsoft Foundation Class Library 
Msamps/s Mega samples per second 
Msps Mega-symbols per second 
  
NOAA National Oceanic and Atmospheric Administration 
NWS National Weather Service 
  
OQPSK Offset Phase Shift Keying 
  
PLL Phase-locked loop 
  
RF Radio Frequency 
RS Reed Solomon (decoder) 
  
samps/s samplers per second 
SAW Surface Acoustic Wave 
SMA SubMiniature version A connector 
SNR Signal to Noise Ratio 
SPI Serial Peripheral Interface 
sps symbols per second 
  
USB Universal Serial Bus 
USRP Universal Software Radio Peripheral 
  
VCDU Virtual Channel Data Unit 
Vpp Peak-to-Peak Voltage 
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Appendix A. Software Design Document 

A.1 EMWIN/HRIT Software Solution Overview 

This appendix details the design architecture of the prototype EMWIN/HRIT software radio.  It is 
intended for designers who are interested in designing a commercial system or doing independent 
research or analysis based off of the prototype design. The objective of this document is to guide 
designers through the process of re-engineering our software solution using the source code that is 
provided by the GOES-R program office.   

The core design of the software is completely based off of GNU Radio version 3.1.2.  GNU Radio is 
an open source product and subject to the general purpose library GPL.  GNU Radio is constantly 
being updated by the user community. Further information can be found in [8]. 

The Aerospace Corporation modified GNU Radio version 3.1.2 to work in the Windows environment 
and to take advantage of multiple-core computers.  Since our software development efforts began, the 
GNU Radio development community has added built-in functionality to work in the Windows 
environment and support multiple-core processors. The newer versions of GNU Radio create a 
separate thread for every communication block present in a given project.  

When our software receiver was compiled using these new versions, the large amount of threads 
present (over 12) generated an excessive amount of handshaking in the software. The large amount of 
buffers and controllers between threads caused the overall throughput of the project to decrease from 
the speeds achieved using only two threads. Overall a careful design where software radio blocks are 
distributed smartly to balance the CPU’s load proved to be a more effective way of designing an 
effective software radio. The GNU Radio environment described in this section is based off of our 
implementation of GNU Radio version 3.1.2, and is not current with the latest GNU Radio release.   

In order to open and recompile the source code, the user will need Microsoft Visual Studio 2003, the 
Intel® Compiler version 10, Intel® Performance Primitives 5.1, and Microsoft Windows XP Service 
Pack 2.  

To begin, download GOESRadio.zip, and unzip its contents to the root C:\ drive.  Notice that there 
are several directories inside the parent directory, C:\GOES Radio\.  

The following folders can be found in the parent directory GOES Radio\ 

 \Common 
 \Documents 
 \EMWIN_I 
 \EMWIN_N 
 \Filters 
 \Firmware 
 \gnuradio 
 \GUI 
 \EMWIN_HRIT 

The directories: EMWN_HRIT, EMWIN_I, EMWIN_N, and GUI are all directories that contain a 
Visual Studio Project file that can be used to generate a new executable. The HRIT project creates 
EMWINHRIT.exe, which is a software receiver for HRIT and LRIT.  The EMWIN_I project creates 
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EMWINI.exe which is a software receiver for the EMWIN-I FSK signal, and finally the EMWIN_N 
project creates EMWINN.exe for the EMWIN-N OQPSK signal.   

The \common folder has static libraries for the FFTW and LibUSB32 package, and it also has files 
that are shared by more than one project.  The frequency acquisition class is a good example of  
shared class that would be located in this folder.  

The \Filters folder contains low pass filter coefficients of varying decimation rates for the LRIT and 
EMWIN-N signal.  The current filter coefficient path is set to \temp\usrp_log\input_data.  This path 
can be changed to reflect your compilation, or you can move the filter coefficients into that directory. 

The \Firmware folder contains windows drivers for the IF digitizer USB device, usrp.inf.  It also 
contains USB and FPGA firmware, std.ihx and std_2rxhb_2tx.rbf respectively.  A new windows 
system variable, USRP_PATH, must be created and must point to the firmware folder. 

The last folder is the \gnuradio folder.  The \gnuradio folder is a stripped down version of the folder 
from GNU Radio 3.1.2.  Although the file structure is very similar, almost all of the original GNU 
Radio files that are used in the Visual Studio projects have been modified.  In addition to the original 
file structure, there is a new folder called \arradio-core.  This folder contains completely new files that 
never existed in GNU Radio 3.1.2.  There are many critical files in this folder, but the most extensive 
ones are ar_viterbi.cc, ar_viterbi_lib.cc, ar_fsk_demo_cf.cc, and ar_freq_acq.cc.  The files, 
ar_viterbi.cc and ar_viterbi_lib.cc, implement the entire Viterbi decoder.  The file ar_fsk_demo_cf.cc 
implements most of the FSK demodulation chain, while a significant portion of the frequency 
acquisition engine was implemented in ar_freq_acq.cc.   

The GUI is a separate project written using Microsoft Foundation Class Library (MFC).  The GUI 
takes user inputs and executes EMWINHRIT.exe, EMWINI.exe, and EMWINN.exe with various 
configuration flags. This is equivalent to executing the different software-receivers from the 
command prompt using the flags described in Table 6, Table 7 and Table 9.  These applications create 
products such as gif, jpg, txt, zip files, and store these files in two folders C:\EMWINTEMP and 
C:\LRITTEMP.  The GUI has a file dialog box that shows the files contained in these temporary 
folders and allows users to display the files.  The GUI also allows users to set various radio options.  
For more information about executing the software radio using the command prompt or the GUI, 
please see the User Guide Document on the GOES-R website.   

EMWIN-HRIT Visual Studio Project Description 
To open the project,  

 Browse to C:\GOES Radio\.   
 Open EMWIN-HRIT.sln 

The solution view ofEMWIN-HRIT.sln should show the major folders 

 Source Files 
 Header Files 
 Resource Files 

The header and resource files will not be covered in this document, only the source code.  Inside the 
Source Files folder, there are the following sub folders 

 gnuradio 
 Main 
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The source files within the \Main subfolder contain most of the major processing code.  The generic 
communication signal processing blocks, such as gr_agc_cc.cc, are provided by the GNU Radio 
3.1.2 package and contained inside the \gnuradio folder and its subfolders.  The low level code that 
facilitates the GNU Radio development environment is in the gnuradio\gnuradio-cores\runtime folder.   
The top level source file that possesses the function main() is main_emwin_hrit.cpp, which is located 
within the \Main folder of the solution. 

EMWIN-HRIT Solution Source Code Organization 
In Figure 35 we show the main source code flow from main_emwin_hrit.cpp.  

 

Figure 35. Flow of major software blocks in the EMWIN/HRIT C++ project 

All of the functionality that interfaces the hardware to the software is contained in the 
gnuradio\gnuradio-cores\usrp  folder.  If the digital portion of the hardware is significantly altered, 
the code in the usrp folder must be changed.  The most important file is usrp1_source_c.cc.  

The frequency acquisition algorithm is implemented with a frequency-acquisition class described in 
freq_acq.cc within the Main\arradio-functions\ folder. This class uses another frequency acquisition 
sub-class that is defined in the solution file \gnuradio\Arradio-cores\ar_freq_acq.cc.    

The Solution Subfolder data link layer contains code that implements the data link layer blocks as 
specified in Section 4.10.1.  These blocks include Frame Synch, De-randomization, RS decoding, 
decompression, and final file assembly.  The main data link layer code is contained in 
GOESprocessor.cpp.  GOESprocessor was not written in the GNU Radio environment, so the 
GNU Radio block ar_lrit_image_sink.cc was written to create a bridge.  The lrit_image_sink class 
creates and instantiates the GOESprocessor class.  

The RF Digitizer Board Configuration subfolder has a file called front_end_ctrl.cpp.  This 
file allows the software to configure the hardware front end for the RF board as specified in 
Section B.4 via a Serial Peripheral Interface (SPI) interface.  The gain of the mixers and the frequency 
of the DDFS can be controlled using the functions defined in that class.    

The other folder within \Main is BPSK demod and Viterbi.  This folder contains code that performs 
the physical layer demodulation blocks (shown in Figure 16), the files bpsk_rx.cpp and 
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viterbi_rx_bpsk.cpp.  In single threaded mode, the file viterbi_rx_bpsk.cpp is not 
used, as the Viterbi decoder is already implemented in bpsk_rx.cpp.  In multi-threaded mode, 
which is the default mode, bpsk_rx.cpp implements everything in the Physical Layer except 
Viterbi decoding and data link layer processing.  The Viterbi decoding and data link layer processing 
are done on its own thread in the file viterbi_rx_bpsk.cpp.     

A.2 EMWIN-HRIT Solution Signal Source Code Details 

A.2.1 Introduction to GNU Radio Syntax 

Before covering source code details, a short overview of our GNU Radio environment syntax is 
required.  There are four general steps to building a communication system using the modified GNU 
Radio environment 

1. Create a block space 
2. Define individual blocks within a block space 
3. Connect the individual blocks together into a chain 
4. Pass data from block to block within a block space 

An example of syntax that creates a block space is  

vector<gr_block_sptr> bpsk_blocks; 

This syntax creates a vector of GNU Radio blocks named bpsk_blocks.  A GNU Radio block is 
implemented using a gr_block class, which is defined in gr_block.cc.  

To create an individual block, one can use the multitude of GNU Radio based blocks or create a 
custom block of class gr_block or gr_synch_block.  A tutorial for building a GNU Radio compliant 
block is provided on the GNU Radio webpage.  The following is an example of how to define an 
AGC block using the GNU Radio file gr_agc_cc.cc.  

 

In the above example, an AGC block, named “agc” is created.  It is configured to have an averaging 
window of 100,000 samples, and to maintain an AGC level of 10.  All GNU Radio block classes 
possess a make-function that creates, configures, and assigns a block to a variable.   

After making one or more blocks, they can be connected using the following syntax 

connect_blocks(block 1, output port, block 2, input port, block 
space). 

The connect_blocks function is defined in gnuradio.cpp.  

The following is an example of connecting blocks.  In our system, there is a phase tracking block 
named “phase_track”, and a matched-filtering block, named “match_filt”.  To connect the first output 
of “phase_track”to the first input of the “match_filt” the following code is executed 

connect_blocks(phase_track, 0, match_filt, 0, d_blocks) 

float agc_rate = 1e-5;
gr_agc_cc_sptr agc = gr_make_agc_cc (agc_rate, 10);
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The first output and input ports are referenced by 0 based on our convention.  The block space used 
for this code is called d_blocks.  Most blocks have one input and one output, but some blocks have 
multiple inputs and multiple outputs.  

Lastly, after connecting all of the blocks, the data is passed from one block to the next, within a block 
space labeled d_blocks, by starting a scheduler using the following syntax.   

gr_single_threaded_scheduler_sptr scheduler =        
start_scheduler_thread(d_blocks, true); 

The scheduler function is defined in the file gr_single_threaded_scheduler.cc. 

A.2.2 Description of Source Code Functions 

One of the key tasks performed in Main() is to form a connection between hardware and software 
using the GNU Radio file usrp1_source_c.cc.  Any hardware that is designed to work with 
GNU Radio software should be designed to utilize usrp1_source_c.cc.  If a contractor develops 
hardware that is not compatible with usrp1_source_c.cc, then significant changes to the 
software will be required.  

To instantiate the hardware one should declare and instantiate the usrp_source_c class.  This is done 
in Main() using the following syntax.  

 

The only variable that must be set when establishing a connection to the hardware is the decimation 
rate within the FGPA based down-converter. The frequency of the mixer can be set to fc using the 
following code. 

usrp_source->set_rx_freq (0,fc); 

As described in Section 4.2, the first action of the software radio is frequency acquisition. Frequency 
acquisition does not need to be run concurrently with demodulation, so it is more efficient to allocate 
all of the computer resources to either frequency acquisition or signal demodulation and decoding, but 
not both.  To do this, a hardware source is instantiated for the purpose of frequency acquisition only.  
After the frequency acquisition engine determines the frequency offset present in the received signal, 
the hardware is released and is re-instantiated later. Below is a sequence of code representing 
frequency acquisition.   

usrp1_source_c_sptr           usrp_source;
usrp_source= usrp1_make_source_c ( which_board, decim_rate,nchan, mux,mode, 0,0,"","")



 

66 

 

In the example above, a frequency acquisition configuration struct, freq_acq_config0, is formed.  This 
configuration struct has two major groups of variables: hardware configuration and frequency 
acquisition configuration.  Frequency acquisition variables such as sampling frequency, the number 
of FFTs, and other parameters are configured in the top half, while the second half is used to 
configure the hardware, which must be instantiated and then released during this process.  After 
performing frequency acquisition, the next steps are BPSK demodulation, Viterbi decoding, and data 
link layer processing as discussed in sections 4.4, 4.7, and 4.10 respectively.   

The HRIT solution was designed to be capable of using multiple threads available on a PC.  Viterbi 
decoding and data link layer processing run on one thread while BPSK demodulation runs on a 
second thread.  In order to do this, two separate block spaces must be created, one for Viterbi 
decoding and one for BPSK demodulation.  This is done with the following code. 

vector<gr_block_sptr> bpsk_blocks; 
vector<gr_block_sptr> viterbi_blocks; 

BPSK demodulation,Viterbi decoding and data link processing are abstracted away from main().  
The bpsk_rx class, defined in bpsk_rx.cpp, is created to define and connect the blocks associated 
with demodulation.  The BPSK demodulator is instantiated by calling the bpsk_demod() function 
of the bpsk_rx class. 

bpsk_rx     bpsk_demod(bpsk_blocks, config); 

Main() interfaces with this class through the public class functions get_input_block(), 
get_soft_output(), and a configuration struct called bpsk_config. Several configuration 
options are passed from main() to the bpsk_rx class bpsk_demod using the following code. 

bpsk_config    config; 
config.Fs     = 64e6/decim_rate;      
config.bit_rate   = atoi(in_bitrate); 

     config.shaping_rolloff = atof(in_shaping_rolloff);     

freq_acq_config freq_acq_config0;
freq_acq_config0.Fs                =  config.Fs;
freq_acq_config0.Fc                = 0;
freq_acq_config0.resolution      = 50;
freq_acq_config0.freq_range     = 50e3;
freq_acq_config0.num_fft_avg  = 16;
freq_acq_config0.square_law    = true;
freq_acq_config0.fourth_law      = false;

//Configure USRP
freq_acq_config0.usrp_which_board  = which_board;
freq_acq_config0.usrp_decim_rate  = decim_rate;
freq_acq_config0.usrp_nchan        = nchan;
freq_acq_config0.usrp_mux          = mux;
freq_acq_config0.usrp_mode = mode;
freq_acq_config0.usrp_fc           = fc;

freq_acq acq(freq_acq_config0, false); 
acq.run();
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config.PBW    = atof(PhaseBW); 
     config.TBW    = atof(TimeBW); 
     config.AGC    = atof(in_AGC); 
     config.vthresh          = atof(vit_thresh); 
     config.resynch_thresh       = atoi(resynch_thresh);   
     config.resynch_period       = atoi(resynch_period); 
   config.sink_data            = atoi(sink_data); 

The bit rate, pulse shaping, sampling frequency, timing tracking loop bandwith, and other parameters 
are transferred from main() to the bpsk_rx class.  

  Main() creates the first two blocks, the hardware source block called usrp_source, and the 
digital rejection filter block called lrit_filter.  The next several demodulation blocks are 
performed within the bpsk_rx class.  The following code shows the syntax for passing the processing 
from main() to the bpsk_rx class, bpsk_demod.  

 

Within the bpsk_rx class (bpsk_rx.cpp), several blocks are created and connected as follows. 

 

As defined in the header file for the bpsk_rx class (bpsk_modem.h), the agc block is connected to 
the outside world using the public function get_input_block(), and the slicer_real block is 
likewise connected to the outside world using get_soft_output().    

After the bpsk demodulator finishes processing the data, it is sent to the Viterbi decoder.  The Viterbi 
decoder is instantiated by calling the viterbi_dec()function of the viterbi_rx class. 

viterbi_rx  viterbi_dec(viterbi_blocks, configV); 

The Viterbi class is configured using the following code. 

viterbi_config configV; 
configV.AGC     = atof(in_AGC); 
configV.resynch_thresh          = atoi(resynch_thresh); 
configV.vthresh                 = atof(vit_thresh); 
configV.resynch_period          = atoi(resynch_period); 
configV.socket_flag             = atoi(in_socket);   

Several variables are passed to the Viterbi decoder such as the AGC level, the Viterbi synchronization 
threshold, and the time between Viterbi re-synchronization periods.  The data link layer variables 
such as CADU frame synchronization thresholds and socket output options are also passed to the 
Viterbi_rx class. 

As stated earlier, Viterbi processing is done on one thread over the viterbi_blocks block space, 
while BPSK processing is done on another one over the bpsk_blocks block space.  To pass data 

connect_blocks(usrp_source,      0, lrit_filter, 0, bpsk_blocks);
connect_blocks(lrit_filter, 0, bpsk_demod.get_input_block(), 0, bpsk_blocks);

connect_blocks(agc, 0, phase_track, 0, d_blocks);
connect_blocks(phase_track, 0, match_filt, 0, d_blocks);
connect_blocks(match_filt, 0, timing_track, 0, d_blocks);
connect_blocks(timing_track, 0, slicer_real, 0, d_blocks);
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from the output of BPSK processing to the input of Viterbi processing, the following code within 
main() is executed.  

 

The first connect_blocks() call uses the block space bpsk_blocks while the second 
connect blocks() function call uses the block space viterbi_blocks.  Using the our 
modified GNU Radio environment, connect_blocks() is not designed to be inherently 
multithreaded.   To pass data from one thread to the next, circular buffers are used.   

The blocks, buff_sink and buff_source, are circular buffers defined over the block spaces 
bpsk_blocks and viterbi_blocks respectively.  The two buffers point to the same address in 
memory and are designed to be thread safe.  This allows data to be passed between threads safely 
while still using syntax designed for single threads. 

The Viterbi_rx class performs the following code within the file viterbi_bpsk_rx.cpp. 

connect_blocks(viterbi_decoder,    0, viterbi_bytes, 0, d_blocks); 
connect_blocks(viterbi_bytes,      0, lrit_sink, 0, d_blocks); 

Viterbi decoding is represented by the block viterbi_decoder.  The block viterbi_bytes 
converts a bit-stream into a byte-stream. The block, lrit_sink, creates an instantiation of the 
GOESprocessor class, which take the Viterbi output byte-stream and performs frame synchronization 
and RS decoding. 

The last major execution within main() begins the scheduler for both the viterbi_blocks and 
bpsk_blocks block spaces.  

gr_single_threaded_scheduler_sptr       scheduler = 
start_scheduler_thread(bpsk_blocks, true); 

gr_single_threaded_scheduler_sptr       scheduler_viterbi = 
start_scheduler_thread(viterbi_blocks, true); 

That concludes the illustration of the code flow in main(). This is just a general illustration of the 
code flow, not a software source code manual.  In order to alter the code, an experienced software and 
communications engineer will need to review the actual source code.   

connect_blocks(bpsk_demod.get_softout(), 0, buff_sink, 0, bpsk_blocks);
connect_blocks(buff_source, 0, viterbi_dec.get_input_block(), 0, viterbi_blocks);
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Appendix B. Hardware Implementation 

B.1 Overview 

The Aerospace Corporation designed two boards, an IF board (AID) and an L-band board referred to 
as the Aerospace RF Digitizer (ARD).  Both designs were designed to demonstrate that the GOES-R 
HRIT signal could be digitized using a “low cost” digitizer board.  The boards were not designed for 
direct commercial use.  Both boards are heavily based on the Ettus Research LLC USRP board and 
firmware developed by the GNU Radio project.  The boards are copyright protected by Ettus 
Research LLC copyright, the FPGA firmware and receiver software are subject to the General 
Purpose License.  The boards were not designed to compete with the USRP or any other 
commercially available design.  This report does not recommend or favor any specific digitizer design 
for the purposes of commercial reception of the GOES signals.  For more information on the USRP 
schematic design, please see the GNU Radio webpage.    

The AID works with data at 140 MHz while the ARD works with L-band frequencies between 1668 – 
1708 MHz. The performance of the IF board is better than the RF board, and thus it is the preferred 
board.  All of the testing, details, and analysis in this report were conducted using the IF board.  A 
brief description of the RF board is provided in Section B.4.  The schematics for the IF board and RF 
board are available from the GOES-R program office. 

B.2 Aerospace IF Digitizer Layout 

In order to minimize interference from the noisy digital components, the analog portion of the board 
was placed as far as possible from the digital side. The analog and digital grounds are joined by the 
ferrite beads, which improve noise isolation.  Many beads were used in parallel to reduce the 
inductance and therefore reduce the ground bounce. The power planes were separated by Low Drop-
Out Voltage regulators (LDOs), especially in the case of power supply to the RF side of the board for 
the ARD.  The general layout of the AID board is shown in the Figure 36. 

 

Figure 36. AID board layout. 
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B.2.1 Components 

Below is a list of all of the components present in the board together with their price. 

Table 17. Component List and Prices 

Device Part# Supplier # Price 

USB Controller CY7C68013A-100AXC http://www.mouser.com/cypress 1 $8.28 

FPGA EP1C6-Q240 http://www.altera.com 1 $15.50 

FPGA EP1C12-Q240C8 http://www.altera.com 1 $35.50 

ADC LTC2226 1 $4.55 

AGC(Digital) AD8367(45dB range) http://www.analog.com 1 $5.88 
Crystal 
(24MHz) XC742CT-ND http://www.digikey.com 1 $0.43 
Crystal 
(64 MHz) CWX813 1 $1 

Transformer MA/COM1-1-13(balun) www.macom.com 1 $0.90 

EEprom 24LC02B/ST http://www.digikey.com 1 $0.22 

BPF(SAW) TB0320A/TB0203A/TB0438A http://www.golledge.com 1 $12.77 

LDO 3.3V (1A) TPS78633KTTT http://www.ti.com 1 $2.80 

DC-DC LM3671MF-1.5 http://www.national.com 1 $1.50 

DC-DC PT5521-1.5(1.5A) http://www.ti.com 1 $15.00 

Capacitor Various Capacitors http://www.digikey.com 104 $8.32 

Resistor Various Resistors http://www.digikey.com 30 $0.41 

Inductor(HP) CDRH5D18NP-1ØØN http://www.digikey.com 1 $0.46 

Inductor MI1206K601R-10 http://www.digikey.com 4 $0.07 

Transistor 2N2907 www.mouser.com 1 $0.23 

SMA J500-ND http://www.digikey.com 2 $2.54 

Fuse(500mA) P11361TR-ND http://www.digikey.com 1 $0.11 

LED L62405CT-ND http://www.digikey.com 2 $0.16 

USB connector WM17113-ND http://www.digikey.com 1 $0.40 

JUMPER A26228-ND http://www.digikey.com 5 $0.15 

Board 4 layer 4"x4"(1K, 4weeks) http://www.4pcb.com 1 $5.86 

Population Board Ingko@dec-assembly.com 1   
Power fem. 
Con WM4900 http://www.digikey.com 1 $0.39 
Power male 
Con WM2900 http://www.digikey.com 1 $0.19 

    Total   $76.61 
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B.2.1.1 Clocking 

There are two crystal oscillators on the board: a 24 MHz clock driving the USB controller, and a 
64 MHz crystal which controls the ADC and the digital signal processing portion of the FPGA.  The 
24 MHz clock has a frequency stability of 100 ppm and a jitter of 116 psec. The 64 MHz clock is not 
temperature controlled, and has a frequency stability of 25 ppm and a jitter of 1 psec.   

The FGPA FIFO that streams data to the USB controller is clocked using a 48 MHz clock.  The USB 
device takes the 24 MHz input clock, and uses an internal clock multiplier and Phase Locked Loop 
(PLL) to generate the 48 MHz clock for the FPGA FIFO.   

B.2.1.2 Power 

For the AID board, power is provided using the same USB interface used for data communication. 
For the ARD board, an external power supply is necessary. The total power consumption for the AID 
and ARD board is 1.5 W and 4.8 W respectively.   

B.2.1.3 ADC 

An LTC 2228 A/D converter was used in the project. The maximum sampling frequency of this 
device is 65 MHz, with an input signal bandwidth of 500MHz.  The ADC SNR is about 71 dB at 
140 MHz. The digital output of this device is in the 2’s complement format and is set by providing 
¾ Vdd to one of the pins. Aside from the data format, the device has no other major configuration 
parameters. The noise figure was computed to be around 37dB. The input dynamic range is 2Vp-p.  

B.2.1.4 AGC 

An AD8367 AGC was used in the project to ensure proper signal levels before entering the ADC. 
This AGC takes in a single ended input, conditions it, and using a balun transformer produces a 
differential signal for the ADC. The AGC has a 7.5 dB noise figure at its maximum gain of 42.5 dB 
for our frequency of interest.  

B.2.1.5 Power Measuring Circuit 

The power measuring circuit lights a series of LEDs based on the estimated signal strength.  The 
signal strength is estimated by evaluating how much amplification the AGC needs to boost the input 
signal to 13 dBm.  The AGC gain is fed into a circuit that drives the individual LEDs.  This circuit 
consists of a simple resistive ladder which produces six voltages between 0 and 0.85 V.  The voltage 
steps required to light successive LEDs is not linear since only six LEDs are used to show the power 
levels across a broad range.   

B.2.1.6 SAW Filter 

The Golledge TB0439 IF anti-aliasing filter was used in the design. The center frequency is 
140 MHz, the bandwidth is 20 MHz, and the insertion loss is 11 dB.  

This filter allows a wide pass band to accommodate multiple IF frequencies, as well as sharp rolloff 
to reject out-of-band noise and signals.  The stop band provides over 30 dB in rejection, and the 
maximum ripple in the pass band is less than 1dB.   
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B.3 Hardware-Software Interface 

B.3.1 Loading the USB and FPGA Firmware 

The heart of the original USRP design, and consequently the AID design, is the digital processing that 
is provided by the USB controller and the FPGA.  Both of these digital devices utilize intricate 
firmware. 

When the AID is first plugged into the computer, the FPGA and USB firmware is not loaded.  When 
the board is plugged into a USB port, a sequence of events takes place. First, one of the LEDs begins 
to blink with frequency of 3 Hz. This blinking means that the USB controller has awakened and 
loaded a simple program from the onboard EEProm.  The EEProm is loaded using an I2C interface 
that is available on the board.  The EEProm routines provides necessary device IDs that the PC uses 
to recognize the USB device.  If the device’s driver has been properly installed, a “USRP filter” 
message will pop up on the computer, along with USB device name.   

The USB drivers are based on an open source USB package called LibUSB32. The drivers are located 
in GOES Radio\gnuradio\gnu_usrp_files\usrp.inf. 

When a user creates  

usrp_source = usrp1_make_source_c 
(which_board,decim_rate,nchan,mux,mode, 0,0,"","")  

within the main software radio code, it executes a chain of commands that go all the way down to low 
level USB calls, as provided by the LibUSB32 library.   The first thing this function does is load two 
firmware files: one is std_main.ihx for the USB controller, and the other is std_2rxhb_2tx.rbf, which 
is the firmware for the FPGA.  The naming convention was based on the original USRP design which 
had 2 half band Rx channels and 2 Tx channels, however our solution only utilizes one Rx channel.   

The C++ file that facilitates the firmware loading sequence is usrp_prims.cc.  In order to successfully 
load the firmware, the application requires a firmware PATH.  The USRP_PATH variable must be set 
as an environment variable, with its value indicating the directory where the firmware is located.  
This directory is \GOES Radio\gnuradio\gnu-usrp\gnu_usrp_files\rev4.  

B.3.2 USB Controller Firmware 

The USB firmware runs on a USB controller called Cypress CY C68013.   The USB firmware can be 
recompiled using the Small Devices C Compiler (SDCC).  The top level source code needed to 
recompile the USB controller is located in GOES 
Radio\gnuradio\usrp\firmware\src\usrp2\usrp_main.c.  Compilation of this file and its dependencies 
will produce an ihx binary file.  The source code creates an instance of the 8051 embedded controller 
architecture.    

Once loaded with the powerful firmware, the USB controller is capable of supporting many of the 
digital functions on the board including: programming the FPGA, supplying SPI and I2C interfaces to 
configure all SPI/I2C compatible onboard devices, and streaming the high speed data from the FPGA 
to the computer. 
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B.3.3 FPGA Firmware 

The GNU Radio webpage provides FPGA source code as well as documentation on its overall 
architecture.  The FPGA firmware can be recompiled using the Altera Quartus II software. Quartus II 
is an open source development tool for Altera FPGA devices.  The top level source code for the 
FPGA firmware is located in the directory GOES Radio\ 
gnuradio\usrp\fpga\toplevel\usrp_std\usrp_std.v.   

To alter the FPGA design, open usrp_std.v in the Quartus II environment.  Once a design is open, the 
files can be altered manually, or reconfigured using the configuration files.  Common configuration 
files, e.g. common_config_bottom.vh, can be found in \GOES Radio 
\gnuradio\usrp\fpga\toplevel\include\.  More specific configuration files, like config.vh, are available 
in the same directory as the top level source file. 

After altering the design as necessary, a designer can recompile the project to generate a new binary 
rbf file.  The rbf file is loaded onto the FGPA during every runtime execution of a GNU radio 
software application.   

Altering the FPGA design can usually be avoided by utilizing the existing registers to extend the 
functionality of any board design.  These registers are defined in fpga_reg_commons.h and 
fpga_reg_standard.h, and are also summarized on the GNU Radio website.   

For the ARD board, we needed to control the gains of few onboard devices and for that we used I/O 
registers that are available for general use.  There are two I/O registers with a bit width of 16 bits. The 
Output register is accessed by first enabling it with _write_oe(which_board, 0x0000,0xffff) and then 
by writing a value to it using usrp_source->write_io(which_board, 0x0900, 0x0c00).  To 
understand how to modify and/or utilize the entire FPGA design, designers will need to follow the 
documentation and source code available by GNU Radio.  

B.3.4 GNU Radio Files Associated with Hardware Instantiation 

The entire GNU Radio architecture cannot be summarized in this document.  A designer that wants to 
modify the digital back-end of the hardware will ultimately need to examine the source code and the 
documentation that is available on the GNU Radio website.  This section intends to give a very brief 
overview of the files that enable GNU Radio to interface with the hardware.  

It is advisable to visit http://gnuradio.org/doc/doxygen.html where all the classes can be easily traced. 
GNU Radio software is highly hierarchical. The GNU Radio software architecture was designed to 
keep the signal processing algorithms and the low level hardware routines separated.  There are only 
four high level classes that handle the hardware connection: usrp1_source_c, usrp1_source_s, 
usrp1_sink_c, and usrp1_sink_s.  The usrp1_source_c and usrp1_source_s classes create a hardware 
receiver that supports complex and short data types respectively. The sink classes create hardware 
transmitters.  Because we are working with complex digital modulation data, and we are using the 
hardware as a receiver, we only use usrp1_source_c.  The following is an example of the inheritance 
chain for usrp1_source_c:  

usrp1_source_c usrp1_source_base  usrp_standard.cpp  usrp_basic  usrp_prims, fusb.cc  
libusb.dll (lowest level USB function calls) 

The FPGA and USB firmware are loaded into the hardware in the usrp_prims.cc file.  
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As an example of how the hardware configuration parameters are passed down through varying levels 
of software, let’s examine how setting the decimation rate on the FPGA’s down-sampling block flows 
through the GNU Radio software.   

The high level call,  

usrp1_make_source_c (which_board,decim_rate,nchan,mux,mode, 0,0,"","") 
[defined in usrp1_source_c.cc] 

invokes 

usrp_standard_rx(which_board,decim_rate,nchan,mux,mode, 0,0,"","") 
[defined in usrp_standard.cc] 

which calls 

set_decim_rate (decim_rate) [defined in usrp_standard.cc] 

which calls 

  int v = has_rx_halfband() ? d_decim_rate/2 - 1 : d_decim_rate - 1; 
  bool ok = _write_fpga_reg (FR_DECIM_RATE, v); [defined in 
usrp_basic.cpp] 

FR_DECIM_RATE is an FPGA register defined in the fpga_reg_commons.h 

The function _write_fpga_reg() calls 

usrp_write_fpga_reg (d_udh, regno, value) [defined in usrp_prims.cc] 

which calls,  

usrp1_fpga_write (udh, reg, value); [defined in usrp_prims.cc] 

which calls,  

   
  buf[0] = (value >> 24) & 0xff; 
  buf[1] = (value >> 16) & 0xff; 
  buf[2] = (value >>  8) & 0xff; 
  buf[3] = (value >>  0) & 0xff; 
   
  return usrp_spi_write (udh, 0x00 | (regno & 0x7f), 
    SPI_ENABLE_FPGA, 
    SPI_FMT_MSB | SPI_FMT_HDR_1, 
    buf, sizeof (buf));  [defined in usrp_prims.cc] 

SPI_ENABLE_FPGA is specified in usrp_spi_defs.h 

The function usrp_spi_write() propagates the value of buf to write_cmd(), and write_cmd() then calls 

usb_control_msg (udh, requesttype, request, value, index, 
      (char *) bytes, len, 1000);  
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Usb_control_msg() is a low level USB device primitive supplied in the libusb.dll dynamic library 
provided by LibUSB32.  

In summary, setting the FPGA’s decimation rate requires data to propagate down 8 levels.  If a 
contractor alters the analog front end to the AID, then there will likely be no change to the software.  
Adding additional registers to the FPGA would not require the software to be rewritten since there are 
already open registers defined in the file fpga_reg_standard.h.  If a contactor wishes to alter the 
serial controller, or the interaction between the serial controller and the FPGA, or the existing SPI 
interfaces on the board, very significant changes to the software would be required. 

The GNU Radio design already provides a flexible bidirectional SPI and I2C interface, a solid 
connection to a sufficiently powerful FPGA, and a more than adequate USB interface to support the 
GOES-R application.  It is strongly recommended that designers work within the framework already 
provided by GNU Radio and the original USRP design.  Utilizing the USRP design will require 
contractors to resolve copyright issues. 

B.4 Aerospace RF Digitizer Overview 

The Aerospace RF digitizer is very similar to the IF digitizer except that it has four new major 
components: An L-band filter, a mixer, an additional oscillator, and a Direct Digital Frequency 
Synthesis unit (DDFS).  These four components are used to down-convert the signal from L-band to 
IF frequencies.  The rest of the board is completely unchanged after the down-conversion from 
L-band to IF.  

The mixer is implemented using the RFMD 2460 mixer chip.  This chip has a variable gain that is 
controlled by the FPGA’s SPI interface, and can be as high as 25 dB.  The noise figure of the device 
is about 1.5 dB. 

The DDFS was implemented using the ADF4360-3 synthesizer chip.  Any frequency can be 
generated in software through the SPI interface in order to properly down-convert the L-band signal 
to a reasonable IF. The DDFS chip is driven by a 27 MHz crystal with frequency stability of 2.5 ppm. 

The Aerospace RF digitizer is shown in Figure 37.  As shown in the figure, the SMA input goes to the 
mixer chip, and then to the successive blocks that are present in the AID board.   
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Figure 37. Aerospace RF (L-band) digitizer board block diagram 

 
 


