

Guidelines on user readiness for new satellite systems, adopted by CBS in Sept 2012 (Summary)

NE W

Information/training of prospective users

- User conferences and workshops on new capabilities
- Portals providing instrument specifications, data formats
- Proxy data sets, tools and demonstration products
- Guidance on receiving hardware/software
- Training material and training events

System operation

- Some overlap period of old/new satellites
- Some overlap of old/new dissemination systems
- Satellite-independent dissemination system (e.g. GEONETCast)

User organizations

- Set up a user readiness project (e.g.~5 years) prior to launch
- Networking through online collaboration

World Meteorological Organization

Working together in weather, climate and water

Observing System Capabilities Analysis and Review Tool (OSCAR)

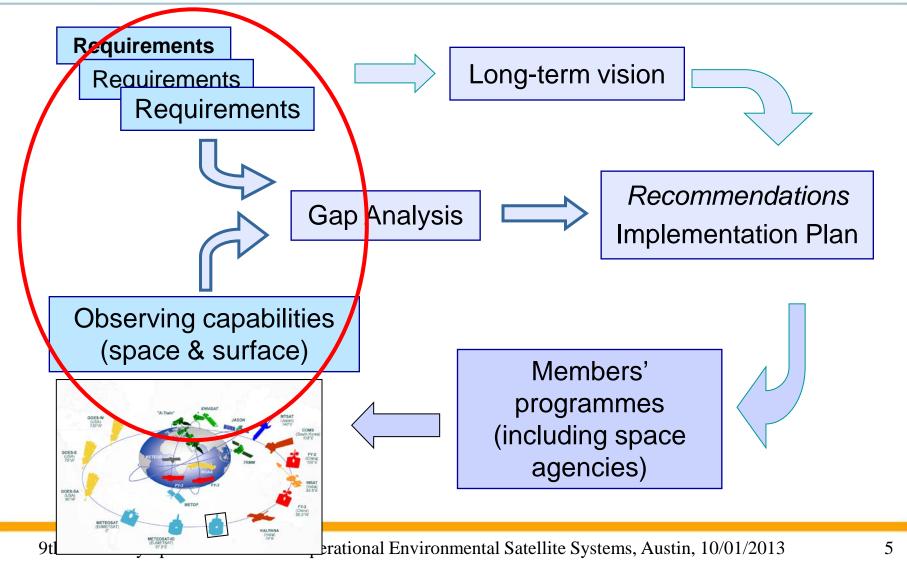
Jérôme Lafeuille and Nils Hettich WMO Space Programme, Geneva

WMO www.wmo.int/sat

Acknowledgements

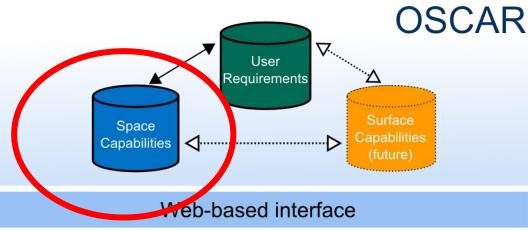
- Nils Hettich, developer of OSCAR
- All satellite operators who provided updates entered in OSCAR

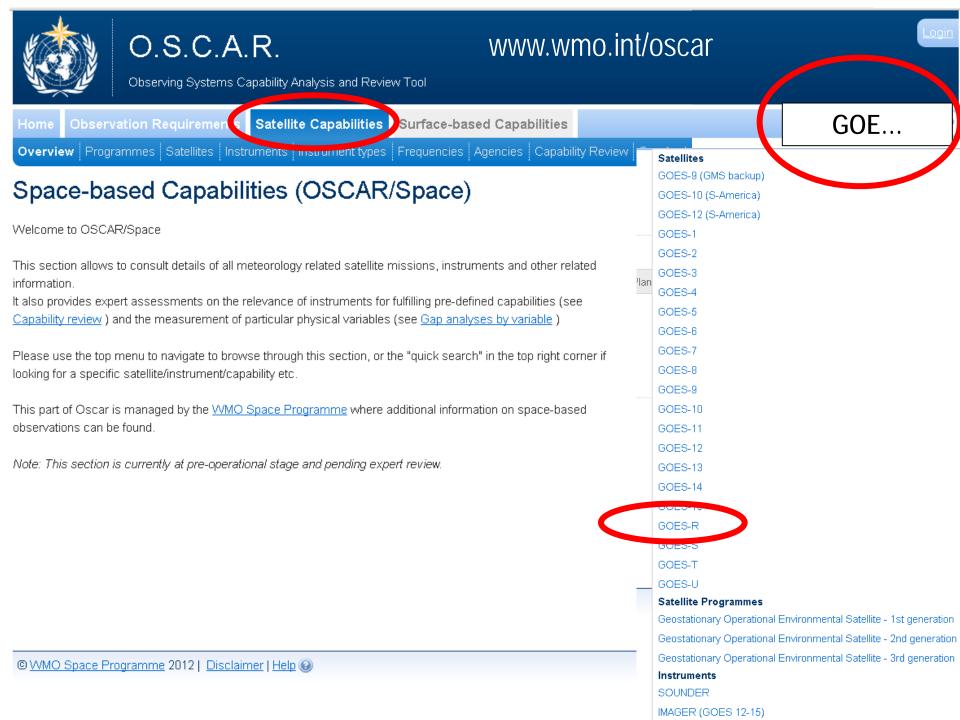
- Dr B. Bizzarri for compiling this information
- Members of ET-EGOS, ET-SAT, ICTSW, IPWG, IROWG, Met Office... for their review and feedback


Outline

- Purpose and overall concept
- OSCAR as directory of satellite capabilities
- OSCAR as analysis and review tool
- Benefits and limitations

Evolution of WMO observing systems

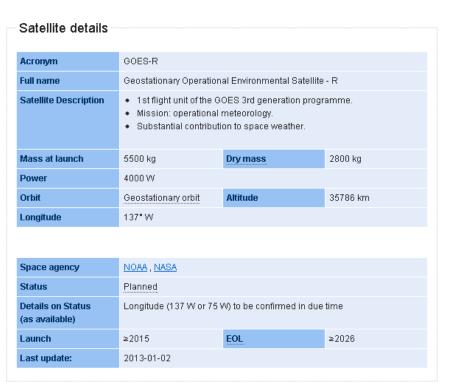

Rolling Review of Requirements (RRR)

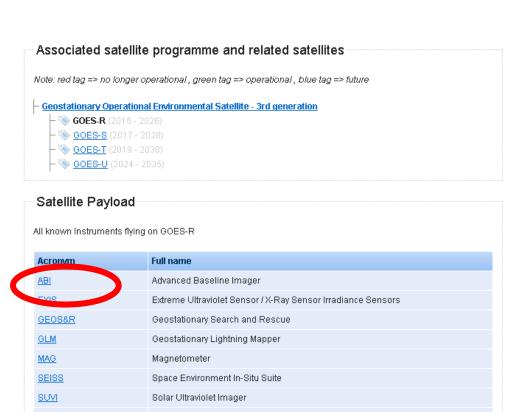


OSCAR concept

- Technical details on 500+ EO satellites, 700+ instruments, programmes and space agencies
- Expert assessments
 - Comparison of planned capabilities with WMO plans
 - Relevance of instruments for measuring particular variables

Satellite view


Quick Search...


Observation Requirements Satellite Capabilities

Surface-based Capabilities

Overview Programmes Satellites Instruments Instrument types Frequencies Agencies Capability Review Gap Analyses by Variable

Satellite: GOES-R

Data Collection and Interrogation Service

Magnetospheric Particle Sensor

Solar and Galactic Proton Sensor

Energetic Heavy Ion Sensor

Satellite Field of View

DCIS

MPS

EHIS

SGPS

Estimate of the satellite's footprint, assuming a zenith angle of 75 ° You can drag the image around and zoom using the mousewheel

Instrument: ABI • •

Instrument view (1)

Instrument detail	S					Detailed characteristics										
Acronym	ABI					Central	Bandwidth	SNR or NEAT @ specified inpu								
Full name	Advanced Ba	seline Imager				wavelength										
Type of Instrument	01. Moderate-	resolution optica	ıl imager			470 nm	40 nm	300 @ 100 % albedo								
Purpose	Multi-nurnose	VIS/IR imagery :	and wind d	erivation by tracking	clouds and water	640 nm	100 nm	300 @ 100 % albedo								
	vapour feature		and mile d	onvacon by tracining	oloddo dila yyddol	860 nm	40 nm	300 @ 100 % albedo								
Short description	16 channels.	balanced VIS. NI	R. SWIR. I	MWIR and TIR (see (detailed	1380 nm	30 nm	300 @ 100 % albedo								
·	characteristic			·		1610 nm	60 nm	300 @ 100 % albedo								
Background	Replacing IMA	AGER flown on G	OES 8 to	15		2260 nm	50 nm	300 @ 100 % albedo								
Scanning Technique	Mechanical, 3	l-axis stabilised s	satellite, E-	W continuous, S-N s	stepping	3.90 µm	0.20 µm	0.1 K@ 300 K								
Resolution	Changing with	n channel (see ta	ible)			6.15 µm	0.90 µm	0.1 K @ 300 K								
Coverage / Cycle	Full disk even	/ 15 min, 3000 ×	5000 km2	("CONUS", Continer	ntal U.S.) in 5	7.00 µm	0.40 µm	0.1 K@ 300 K								
,		000 km2 in 30 s		,	,	7.40 µm	0.20 µm	0.1 K@ 300 K								
Mass	338 kg	Power	450 W	Data Rate	66 Mbps	8.50 µm	0.40 µm	0.1 K@ 300 K								
						9.70 μm	0.20 μm	0.1 K@ 300 K								
						10.3 μm	0.50 µm	0.1 K@ 300 K								
Providing Agency			N	<u>oaa</u>		11.2 µm	0.80 µm	0.1 K @ 300 K								
Utilization Period:			20	015-2035		12.3 µm	1.00 µm	0.1 K @ 300 K								
Last update:			20	012-09-05		13.3 μm	0.3 K@ 300 K									

From instruments to variables

- Which variables can be derived from a given instrument?
- Which instruments can measure a given variable ?
- OSCAR provides first-level, expert-reviewed assessments based on instrument design features

Instrument: Orlo

Instrumen

Acronym

Full name

Type of Instrument

Purpose

Short description

Background

Scanning Technique

Resolution

Coverage / (

Mass

Providing A

Last u date

Deta led

Spectral range (µm)

9.13 - 5.40 µm

5.71 - 8<mark>1</mark>26 µr

3.92 - 4.6 µr

Tentative Evaluation of Measurements

The following list indicates which measurements can **typically** be retrieved from this category of instrument. To see a full Gap Analysis by Variable, click on the respective variable.

Note: table can be sorted by clicking on the column headers.

Variable	Relevance for measuring this Variable	Operational Limitations	Processing maturity
Specific humidity	1-Primary	Clouds	Consolidated methodology
Atmospheric temperature	1-Primary	Clouds	Consolidated methodology
Temperature of the tropopause	2-High	Coarse accuracy. Clouds	Consolidated methodology
Upward spectral radiance at TOA	2-High	Spectral range limited on FIR side	Consolidated methodology
<u>Long-wave Earth</u> <u>surface emissivity</u>	2-I ligh	Coarse resolution. Clouds	Consolidated methodology
<u>Upward long-wave</u> <u>irradiance at TOA</u>	3 Medium	Highly indirect. Clouds	Consolidated methodology
Sea surface	3-Medium	Coarse resolution.	Consolidated

Measurement Timeline for Atmospheric temperature Definition: 3D field of the atmospheric temperature

Variable view

Filter by Satellite or Instrument

Instrument	Relevance	Satellite	Orbit	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
MWTS-2	1-Primary	FY-3RM-1							Х	Х	ж	Х	Х											
MWTS-2	1-Primary	<u>FY-3RM-2</u>											Х	Х	Х	ж								
<u>Radiomet</u>	3-Medium	Meteor-M N3							Х	Х	Х	Х	X	Х										
SOUNDER	3-Medium	G0ES-15	135°W	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х										
SOUNDER	3-Medium	G0ES-14	75°W	Х	Х	Х	Х	Х	Х	Х														
SOUNDER	3-Medium	GOES-12 (S-America)	60°W	Х	Х	Х																		
HIS	1-Pri mary	Electro-M N2	14.5°W								Х	Х	Х	Х	Х	Х	Х	Х						
<u>IRS</u>	1-Pri mary	MTG-S1	0°											Х	х	Х	х	Х	Х	Х	Х	Х		
IRS	1-Pri mary	MTG-S2	0"																			х	х	Х
SOUNDER (INSAT3D)	3-Medium	INSAT-3D-prime	74°E					Х	Х	Х	Х	Х	X	Х	Х									
HIS	1-Pri mary	Electro-M N1	76°E							Х	ж	Х	Х	Х	Х	Х	Х							
SOUNDER (INSAT3D)	3-Medium	INSAT-3D	82 ° E				Х	Х	Х	Х	Х	Х	Х											
GIIRS	1-Pri mary	FY-4A	86.5°E						х	х	Х	х	Х	х										
GIIRS	1-Primary	<u>FY-4C</u>	86.5°E										Х	х	Х	х	Х	Х	Х					
GIIRS	1-Primary	FY-4E	86.5°E																Х	Х	Х	Х	х	Х
GIIRS	1-Primary	<u>FY-4B</u>	105°E								Х	х	Х	х	Х	х	Х							
GIIRS	1-Primary	FY-4D	105°E												Х	х	Х	Х	Х	Х				
GIIRS	1-Primary	FY-4F	105°E																			х	х	Х
ROSA	3-Medium	Megha-Tropiques	20 °		Х	Х	Х	Х	Х	Х														
Tri-G (COSMIC-2)	2-High	Cosmic-2 (1-6)	24 °							х	Х	х	Х	х	х									
SAGE-III	5-Marginal	ISS	51.6 °					Х	Х	Х	Х	Х	Х											
IGOR (COSMIC)	2-High	COSMIC (6 sats)	71 °	X	Х	X																		
Tri-G (COSMIC-2)	2-High	Cosmic-2 (7-12)	72 °									Х	Х	Х	Х	Х	Х							
MAESTRO .	5-Marginal	SCISAT-1	73.9 °	Х	Х	Х																		
ACE-FTS	4-Useful	SCISAT-1	73.9 °	Х	Х	Х																		
<u>TIDI</u>	5-Marginal	TIMED	74 °	Х	Х	Х	Х	Х																

List of target « capabilities » in OSCAR

Multi-purpose VIS/IR imagery from LEO	Lightning imagery from LEO
Multi-purpose VIS/IR imagery from GEO	Lightning imagery from GEO
IR temperature/humidity sounding from LEO	Cloud and precipitation profiling by radar
IR temperature/humidity sounding from GEO	Lidar observation (for wind, cloud/aerosol, trace gases, altimetry)
MW temperature/humidity sounding from LEO	Cross-nadir SW spectrometry (for chemistry) from LEO
MW temperature/humidity sounding from GEO	Cross-nadir SW spectrometry (for chemistry) from GEO
Multi-purpose MW imagery	Cross-nadir IR spectrometry (for chemistry) from LEO
Low-frequency MW imagery	Cross-nadir IR spectrometry (for chemistry) from GEO
Radio occultation sounding	Limb-sounding spectrometry
Earth radiation budget from LEO	High-resolution imagery for land observation
Earth radiation budget from GEO	Synthetic Aperture Radar
Sea-surface wind by active and passive MW	Gravity field measuring systems
Radar altimetry	Space Weather: solar activity, solar wind, deep space monitoring
Ocean colour imagery from LEO	Space Weather: ionosphere and magnetosphere monitoring
Ocean colour imagery from GEO	Precise positioning
Imagery with special viewing geometry	Data Collection Systems and Search-and-Rescue

Monitoring the implementation of WMO plans

Analyses by Variable

ties Capability Review Ga

Quick Search.

IR temperature/humidity sounding from LEO

Details on this configuration

Full name	IR temperature/humidity sounding from LEO
Definition	This capability consists of medium spectral resolution spectrometers or radiometers operating in the IR part of the spectrum, in Low Earth Orbit.
Reference Observing Strategy	 The reference observing strategy is: three orbital planes (early morning: 5:30 ± 2 h; mid-morning: 9:30 ± 2 h; early afternoon: 13:30 ± 2 h); one fully compliant instrument in each plane, and one backup, as similar as possible.

D5:30 No IR sounding planned in the early morning orbit. An option to fly FY-3 is being investigated by China.
 ± 2 h
 D9:30 Adequate data are expected to be provided by the MetOp-SG IAS and the likely follow-on of the FY-3 ASI and the Meteor-MP IKFS-2.
 Adequate data are expected to be provided by the JPSS CrIS and the likely follow-on of the FY-3 ASI and the ± 2 h
 Meteor-MP IKFS-2.

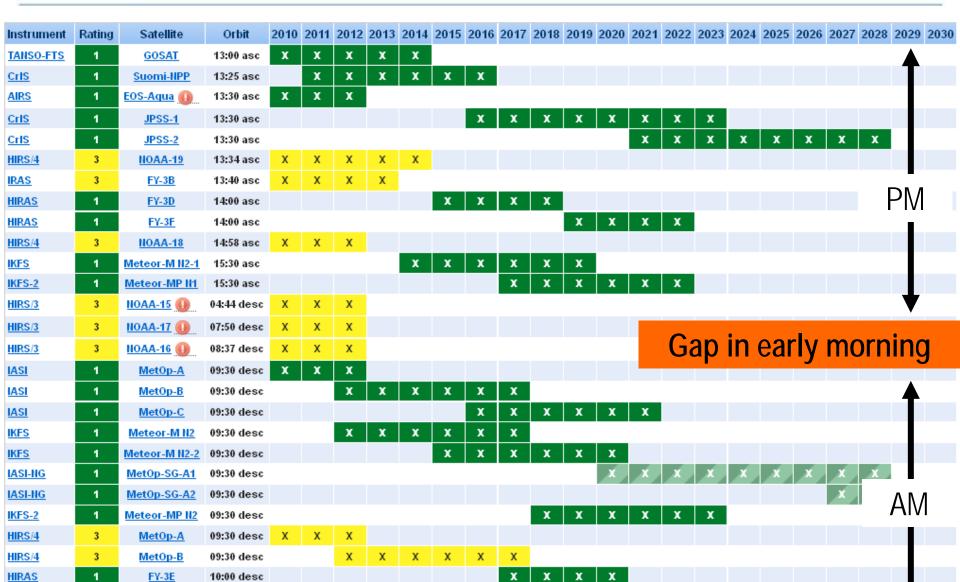
Full gan of ID counding in the early marning orbit. Only MW, with non-ontimal econning (conical)

ddrocood by this canabilit

The « Capability Review » compares the available/planned capabilities with those required by the WMO Vision of global observing systems

- CH4 - CO2 - HNO3 - C2H6 - N2O5 - C2H2 - N2O

> - <u>CIONO2</u> - SF6


- <u>H2O</u>

—— – <u>CFC-12</u>

- <u>PAN</u>

IR SOUNDING from LEO

Benefits and limitations

- Directory of satellites and instruments:
 - Useful reference for reports, applications, training
- First level gap analysis :
 - Based on sensor classes, not individual sensors
 - Based on sensor design, regardless of status or data availability
 - Based on single sensors, regardless of possible combinations
 - Cannot replace detailed gap analysis but starting point for such analysis
- Support for high-level global coordination of satellite plans within CGMS and WMO
 - Contingency planning, frequency spectrum management
 - Architecture for climate monitoring from space

- Please visit <u>www.wmo.int/oscar</u>
- Your feedback is welcome to help improving this resource

Thank you for your attention!

Back-up slides

Satellite frequency information

(Example: NOAA-19)

Space agency	<u>NOAA</u>	NOAA												
Status	Operational	Operational												
Details on Status (as available)	AMSU-A channel 5:	11 ± 1.0 GHz noisy sind 5.5 GHz noisy since Dec 00 asc, is drifting at a r	cember 2009											
Launch	2009-02-06	EOL	≥2014											
Last update:	2012-11-02	2012-11-02												

· -
Search & Rescue Satellite-Aided Tracking System
Solar Backscatter Ultraviolet / 2
Space Environment Monitor – 2
Medium energy proton detector
Total Energy Detector

Frequency information Show expert details

Service	Dir	Frequency	Bandwidth	Polarisation	D/A	Data rate or Baseband	Comme
HRPT	S-E	1698 MHz	2660 kHz	RHCP	D	665.4 kbps	Full res. d
APT	S-E	137.1 MHz	38 kHz	RHCP	А	1.7 kHz	Low res.
DSB	S-E	137.35 MHz	48 kHz	RHCP	D	8.32 kbps	TIP data
DSB	S-E	137.77 MHz	48 kHz	RHCP	D	8.32 kbps	TIP data

Satellite missions in the Vision for the GOS in 2025

- GEO: imager, HS IR sounder, lightning
- Sun-synchronous: imager, IR/MW sounders
- Ocean surface topography constellation
- Radio-Occultation Sounding constellation
- Ocean Surface Wind constellation
- Global Precipitation constellation
- Earth Radiation Budget (GEO/LEO)
- Atmospheric Composition (GEO/LEO)
- Ocean colour and vegetation imaging
- Dual-angle view IR imaging
- Land Surface Imaging
- Synthetic Aperture Radar
- Solar and space environment monitoring

Operational pathfinders and demonstrators

- VIS/IR imagers in HEO
- Doppler wind lidar, Low-frequency MW
- GEO MW
- GEO High-resolution narrow-band imagers
- Gravimetric sensors

Reviewing the implementation of the WMO Vision of the GOS

- The WMO Vision of GOS for 2025 defines target space-based observing capabilities
- For each capability:
 - OSCAR records the reference configuration
 - Relevant instrument categories are identified
 - Actual/planned availability is displayed
 - Expert Team assessment is recorded

Example: ERB from LEO

Instrument	Rating	Satellite	Orbit	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
<u>ScaRaB</u>	2	Megha-Tropiques	20 °		Х	Х	Х	Х	Х	Х														
CERES	1	<u>TRMM</u>	35 °	Х	Х	Х	х																	
SIM	4	SORCE	40 °	Х	Х	Х																		
<u>TIM</u>	4	SORCE	40 °	Х	Х	Х																		
CERES	1	Suomi-NPP	13:25 asc		Х	Х	х	Х	х	X														
CERES	1	EOS-Aqua 🕕	13:30 asc	х	х	х																		
CERES	1	JPSS-1	13:30 asc		•					x	х	х	х	х	х	х	х							
CERES-FO	1	JPSS-2	13:30 asc												х	х	х	х	х	х	х	х		
<u>TSIS</u>	4	JPSS-FF-1	13:30 asc							Х	Х	Х	Х	Х	Х									
<u>TSIS</u>	4	JPSS-FF-2	13:30 asc												Х	Х	Х	Х	Х	Х				
ERM-1	3	<u>FY-3B</u>	13:40 asc	Х	Х	Х	Х																	
SIM-1	4	<u>FY-3B</u>	13:40 asc	Х	Х	Х	Х																	
ERM-2	1	FY-3E	10:00 desc								х	х	х	х										
ERM-2	1	<u>FY-3G</u>	10:00 desc												х	х	х	х						
ERM-1	3	<u>FY-3C</u>	10:00 desc				Х	Х	X	Х														
SIM-1	4	<u>FY-3C</u>	10:00 desc				Х	Х	Х	Х														
SIM-2	4	FY-3E	10:00 desc								Х	Х	Х	Х										
SIM-2	4	<u>FY-3G</u>	10:00 desc												Х	Х	Х	Х						
ERM-1	3	<u>FY-3A</u>	10:15 desc	Х	Х	Х																		
SIM-1	4	<u>FY-3A</u>	10:15 desc	Х	Х	Х																		
CERES	1	EOS-Terra	10:30 desc	х	х	х																		
ACRIM-III	4	<u>ACRIMSat</u>	10:50 desc	Х	Х	Х																		
BBR	5	Earth-CARE	13:30 desc						X	X	X	X												

Example: Limb sounding spectrometry

Instrument	Rating	Satellite	Orbit	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
	J			2010	2011	2012	2013							2020	2021	LULL	LULJ	2024	LULJ	2020	LUZI	2020	2023	2030
SAGE-III	5	<u>ISS</u>	51.6°					Х	Х	Х	Х	Х	Х											
MAESTRO	5	SCISAT-1	73.9°	Х	Х	Х																		
ACE-FTS	5	SCISAT-1	73.9 °	Х	Х	Х																		
<u>TIDI</u>	1	TIMED	74°	Х	х	х	Х	х																
SABER	4	TIMED	74 °	Х	Х	Х	Х	Х																
OMPS-limb	1	Suomi-NPP	13:25 asc		х	х	х	х	х	х														
OMPS-limb	1	JPSS-2	13:30 asc												х	х	х	х	х	х	х	х		
TES-limb	2	EOS-Aura	13:30 asc	Х	Х	Х																		
MLS (EOS-Aura)	3	EOS-Aura	13:30 asc	X	Х	Χ																		
<u>HIRDLS</u>	4	EOS-Aura	13:30 asc	Х	Х	Х																		
<u>OSIRIS</u>	1	<u>Odin</u>	06:00 desc	Х	х	х																		
<u>SMR</u>	3	<u>Odin</u>	06:00 desc	Х	Х	Х																		
OMS-limb	1	<u>FY-3E</u>	10:00 desc								х	х	х	х										
OMS-limb	1	<u>FY-3G</u>	10:00 desc												х	х	х	х						
<u>POAM</u>	5	SPOT-4	10:30 desc	X	Х	Х																		